
Data Acquisition Toolbox™
Reference

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Data Acquisition Toolbox™ Reference
© COPYRIGHT 2005–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2010 Online only Revised for Version 2.17 (Release 2010b)
April 2011 Online only Revised for Version 2.18 (Release 2011a)
September 2011 Online only Revised for Version 3.0 (Release 2011b)
March 2012 Online only Revised for Version 3.1 (Release 2012a)
September 2012 Online only Revised for Version 3.2 (Release 2012b)
March 2013 Online only Revised for Version 3.3 (Release 2013a)
September 2013 Online only Revised for Version 3.4 (Release 2013b)
March 2014 Online only Revised for Version 3.5 (Release 2014a)
October 2014 Online only Revised for Version 3.6 (Release 2014b)
March 2015 Online only Revised for Version 3.7 (Release 2015a)
September 2015 Online only Revised for Version 3.8 (Release 2015b)
March 2016 Online only Revised for Version 3.9 (Release 2016a)
September 2016 Online only Revised for Version 3.10 (Release 2016b)
March 2017 Online only Revised for Version 3.11 (Release 2017a)
September 2017 Online only Revised for Version 3.12 (Release 2017b)
March 2018 Online only Revised for Version 3.13 (Release 2018a)
September 2018 Online only Revised for Version 3.14 (Release 2018b)

Base Properties — Alphabetical List
1

Device-Specific Properties — Alphabetical List
2

Block Reference
3

Functions — Alphabetical List
4

v

Contents

Base Properties — Alphabetical List

1

ActiveEdge
Rising or falling edges of EdgeCount signals

Description
When working with the session-based interface, use the ActiveEdge property to
represent rising or falling edges of a EdgeCount signal.

Values
You can set the Active edge of a counter input channel to Rising or Falling.

Examples
s = daq.createSession('ni');
ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'Dev2':

 ActiveEdge: Rising
 CountDirection: Increment
 InitialCount: 0
 Terminal: 'PFI8'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

Change the Active Edge property to 'Falling':
ch.ActiveEdge = 'Falling'

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'Dev2':

 ActiveEdge: Falling
 CountDirection: Increment
 InitialCount: 0
 Terminal: 'PFI8'

1 Base Properties — Alphabetical List

1-2

 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

See Also

Functions
addCounterInputChannel, addCounterOutputChannel

 ActiveEdge

1-3

ActivePulse
Active pulse measurement of PulseWidth counter channel

Description
When working with the session-based interface , the ActivePulse property displays the
pulse width measurement in seconds of your counter channel, with PulseWidth
measurement type.

Values
Active pulse measurement values include:

• 'High'
• 'Low'

Examples
Create a session object, add a counter input channel, with the 'EdgeCount'
MeasurementType.
s = daq.createSession('ni');
ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'PulseWidth')

ch =

Data acquisition counter input pulse width channel 'ctr0' on device 'cDAQ1Mod5':

 ActivePulse: High
 Terminal: 'PFI4'
 Name: empty
 ID: 'ctr1'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'PulseWidth

Change the ActiveEdge property to Low.

ch.ActivePulse = 'Low'

ch =

1 Base Properties — Alphabetical List

1-4

Data acquisition counter input pulse width channel 'ctr0' on device 'cDAQ1Mod5':

 ActivePulse: Low
 Terminal: 'PFI4'
 Name: empty
 ID: 'ctr1'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'PulseWidth'

See Also
addCounterInputChannel

 ActivePulse

1-5

ADCTimingMode
Set channel timing mode

Description
When working with the session-based interface, use the ADCTimingMode property to
specify if the timing mode in of all channels in the device is high resolution or high speed.

Note The ADCTimingMode must be the same for all channels on the device.

Values
You can set the ADCTimingMode to:

• 'HighResolution'
• 'HighSpeed'
• 'Best50HzRejection'
• 'Best60HzRejection'

Examples
Create a session and add an analog input channel:

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');

ch

ans =

Data acquisition analog input voltage channel 'ai1' on device 'cDAQ1Mod1':

 Coupling: DC
 TerminalConfig: SingleEnded
 Range: -10 to +10 Volts
 Name: ''

1 Base Properties — Alphabetical List

1-6

 ID: 'ai1'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Voltage'
 ADCTimingMode: ''

Set the ADCTimingMode property to 'HighResolution':
ch.ADCTimingMode = 'HighResolution';

See Also
addAnalogInputChannel

 ADCTimingMode

1-7

AutoSyncDSA
Automatically Synchronize DSA devices

Description
Use this property to enable or disable automatic synchronization between DSA (PXI or
PCI) devices in the same session. By default the sessions automatic synchronization
capability is disabled.

Examples
To enable automatic synchronization, create a session and add channels from a DSA
device:

s = daq.createSession('ni')
addAnalogInputChannel(s,'PXI1Slot2',0,'Voltage');
addAnalogInputChannel(s,'PXI1Slot3',1,'Voltage');

Enable automatic synchronization and acquire data”

s.AutoSyncDSA = true;
startForeground(s);

See Also
addAnalogInputChannel

1 Base Properties — Alphabetical List

1-8

BitsPerSample
Display bits per sample

Description
This property displays the maximum value of bits per sample of the device, based on the
device specifications. By default this read-only value is 24.

Example

View BitsPerSample Property
Create an audio input session and display session properties.

s = daq.createSession('directsound')

s =

Data acquisition session using DirectSound hardware:
 Will run for 1 second (44100 scans) at 44100 scans/second.
 No channels have been added.

Properties, Methods, Events

Click on the Properties link.

 UseStandardSampleRates: true
 BitsPerSample: 24
 StandardSampleRates: [1x15 double]
 NumberOfScans: 44100
 DurationInSeconds: 1
 Rate: 44100
 IsContinuous: false
 NotifyWhenDataAvailableExceeds: 4410
IsNotifyWhenDataAvailableExceedsAuto: true
 NotifyWhenScansQueuedBelow: 22050
 IsNotifyWhenScansQueuedBelowAuto: true

 BitsPerSample

1-9

 ExternalTriggerTimeout: 10
 TriggersPerRun: 1
 Vendor: DirectSound
 Channels: ''
 Connections: ''
 IsRunning: false
 IsLogging: false
 IsDone: false
 IsWaitingForExternalTrigger: false
 TriggersRemaining: 1
 RateLimit: ''
 ScansQueued: 0
 ScansOutputByHardware: 0
 ScansAcquired: 0

See Also
StandardSampleRates | UseStandardSampleRates | addAudioInputChannel |
addAudioOutputChannel

1 Base Properties — Alphabetical List

1-10

BridgeMode
Specify analog input device bridge mode

Description
Use this property in the session-based interface to specify the bridge mode, which
represents the active gauge of the analog input channel.

The bridge mode is 'Unknown' when you add a bridge channel to the session. Change
this value to a valid mode to use the channel. Valid bridge modes are:

• 'Full' — All four gauges are active.
• 'Half'— Only two bridges are active.
• 'Quarter'— Only one bridge is active.

Examples

Set BridgeMode Property

Set the BridgeMode property of an analog input Bridge measurement type channel.

Create a session and add an analog input Bridge channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'Bridge');

Set the BridgeMode property to 'Full' and view the channel properties.

ch.BridgeMode = 'Full'

ch =

Data acquisition analog input channel 'ai0' on device 'cDAQ1Mod7':

 BridgeMode: Full
 ExcitationSource: Internal

 BridgeMode

1-11

 ExcitationVoltage: 2.5
NominalBridgeResistance: 'Unknown'
 Range: -0.063 to +0.063 VoltsPerVolt
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Bridge'
 ADCTimingMode: HighResolution

See Also
addAnalogInputChannel

1 Base Properties — Alphabetical List

1-12

Channels
Array of channel objects associated with session object

Description
This session object property contains and displays an array of channels added to the
session. For more information on the session-based interface, see “Hardware Discovery
and Session Setup”.

Tip You cannot directly add or remove channels using the Channels object properties.
Use addAnalogInputChannel and addAnalogOutputChannel to add channels. Use
removeChannel to remove channels.

Values
The value is determined by the channels you add to the session object.

Example

Access Channels Property
Create both analog and digital channels in a session and display the Channels property.

Create a session object, add an analog input channel, and display the session Channels
property.

s = daq.createSession('ni');
aich = addAnalogInputChannel(s,'cDAQ1Mod7',0,'Bridge');

aich =

Data acquisition analog input channel 'ai0' on device 'cDAQ1Mod7':

 BridgeMode: Unknown

 Channels

1-13

 ExcitationSource: Internal
 ExcitationVoltage: 2.5
NominalBridgeResistance: 'Unknown'
 Range: -0.025 to +0.025 VoltsPerVolt
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Bridge'
 ADCTimingMode: HighResolution

Add an analog output channel and view the Channels property.

aoch = addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'Voltage')

aoch =

Data acquisition analog output voltage channel 'ao1' on device 'cDAQ1Mod2':

 TerminalConfig: SingleEnded
 Range: -10 to +10 Volts
 Name: ''
 ID: 'ao1'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Voltage'

Add a digital channel with 'InputOnly'.

dich = addDigitalChannel(s,'dev1','Port0/Line0:1','InputOnly')

dich =

Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- --------------- ----- ----
 1 dio Dev1 port0/line0 InputOnly n/a
 2 dio Dev1 port0/line1 InputOnly n/a

Change the TerminalConfig property of the input channel to 'SingleEnded'.

aich.TerminalConfig = 'SingleEnded';

1 Base Properties — Alphabetical List

1-14

You can use the channel object to access and edit the Channels property.

See Also

Functions
addAnalogInputChannel, addAnalogOutputChannel

 Channels

1-15

Connections
Array of connections in session

Description
This session property contains and displays all connections added to the session.

Tip You cannot directly add or remove connections using the Connections object
properties. Use addTriggerConnection and addClockConnection to add
connections. Use removeConnection to remove connections.

Values
The value is determined by the connections you add to the session.

Examples

Remove Synchronization Connection
This example shows you how to remove a synchronization connection.

Create a session and add analog input channels and trigger and clock connections.

s = daq.createSession('ni')
addAnalogInputChannel(s,'Dev1', 0, 'voltage');
addAnalogInputChannel(s,'Dev2', 0, 'voltage');
addAnalogInputChannel(s,'Dev3', 0, 'voltage');
addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');
addTriggerConnection(s,'Dev1/PFI4','Dev3/PFI0','StartTrigger');
addClockConnection(s,'Dev1/PFI5','Dev2/PFI1','ScanClock');

Examine the session Connections property.

s.Connections

1 Base Properties — Alphabetical List

1-16

ans =

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by:
 'Dev2' at terminal 'PFI0'
 'Dev3' at terminal 'PFI0'
Scan Clock is provided by 'Dev1' at 'PFI5' and will be received by:
 'Dev2' at terminal 'PFI1'
 'Dev3' at terminal 'PFI1'

 index Type Source Destination
 ----- ------------ --------- -----------
 1 StartTrigger Dev1/PFI4 Dev2/PFI0
 2 StartTrigger Dev1/PFI4 Dev3/PFI0
 3 ScanClock Dev1/PFI5 Dev2/PFI1
 4 ScanClock Dev1/PFI5 Dev3/PFI1

Remove the last clock connection at index 4 and display the session connections.

removeConnection(s,4)
s.Connections

ans =

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by:
 'Dev2' at terminal 'PFI0'
 'Dev3' at terminal 'PFI0'
Scan Clock is provided by 'Dev1' at 'PFI5' and will be received by 'Dev2' at terminal 'PFI1'.

 index Type Source Destination
 ----- ------------ --------- -----------
 1 StartTrigger Dev1/PFI4 Dev2/PFI0
 2 StartTrigger Dev1/PFI4 Dev3/PFI0
 3 ScanClock Dev1/PFI5 Dev2/PFI1

See Also

Function
addTriggerConnection, addClockConnection,

 Connections

1-17

CountDirection
Specify direction of counter channel

Description
When working with the session-based interface, use the CountDirection property to set
the direction of the counter. Count direction can be 'Increment', in which case the counter
operates in incremental order, or 'Decrement', in which the counter operates in
decrements.

Examples
Create a session object, add a counter input channel, and change the CountDirection.
s = daq.createSession('ni');
ch = addCounterInputChannel (s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising
 CountDirection: Increment
 InitialCount: 0
 Terminal: 'PFI8'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

Change CountDirection to 'Decrement':
ch.CountDirection = 'Decrement'

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising
 CountDirection: Decrement
 InitialCount: 0
 Terminal: 'PFI8'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

1 Base Properties — Alphabetical List

1-18

See Also
addCounterInputChannel

 CountDirection

1-19

Destination
Indicates trigger destination terminal

Description
When working with the session-based interface, the Destination property indicates the
device and terminal to which you connect a trigger.

Example

Examine a Trigger Connection Destination
Create a session with a trigger connection and examine the connection properties.

Create a session and add 2 analog input channels form different devices.

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1', 0, 'voltage');
addAnalogInputChannel(s,'Dev2', 0, 'voltage');

Add a trigger connection and examine the connection properties.

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger')

ans =

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by 'Dev2' at terminal 'PFI0'.

 TriggerType: 'Digital'
TriggerCondition: RisingEdge
 Source: 'Dev1/PFI4'
 Destination: 'Dev2/PFI0'
 Type: StartTrigger

See Also
Source, addTriggerConnection

1 Base Properties — Alphabetical List

1-20

Device
Channel device information

Description
When working with the session-based interface, the read-only Device property displays
device information for the channel.

Examples
Create a session object, add a counter input channel, and view the Device property.
s = daq.createSession('ni');
ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount');
ch.Device

ans =

ni cDAQ1Mod5: National Instruments NI 9402
 Counter input subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels
 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 3 channels
 'PulseGeneration' measurement type

This module is in chassis 'cDAQ1', slot 5

See Also
addCounterInputChannel, addCounterOutputChannel

 Device

1-21

Direction
Specify digital channel direction

Description
When you add a digital channel or a group to a session, you can specify the measurement
type to be:

• Input
• Output
• Unknown

When you specify the MeasurementType as Bidirectional, you can use the channel to
input and output messages. By default the channel is set to Unknown. Change the
direction to output signal on the channel.

Example
To change the direction of a bidirectional signal on a digital channel in the session s,
type:

s.Channels(1).Direction='Output';

Change the Direction of a Digital Channel
Change the direction of a bidirectional digital channel to Input.

Create a session and add a bidirectional digital channel.

s = daq.createSession('ni')
ch = addDigitalChannel(s,'dev6', 'Port0/Line0', 'Bidirectional')

ch =

Data acquisition digital bidirectional (unknown) channel 'port0/line0' on device 'Dev6':

 Direction: Unknown

1 Base Properties — Alphabetical List

1-22

 Name: ''
 ID: 'port0/line0'
 Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Bidirectional (Unknown)'

Change the channels direction to 'Input'.

ch.Direction = 'Input'

ch =

Data acquisition digital bidirectional (input) channel 'port0/line0' on device 'Dev6':

 Direction: Input
 Name: ''
 ID: 'port0/line0'
 Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Bidirectional (Input)'

Properties, Methods, Events

 Direction

1-23

DurationInSeconds
Specify duration of acquisition

Description
When working with the session-based interface, use the DurationInSeconds property
to change the duration of an acquisition.

When the session contains analog, digital, or audio output channels,
DurationInSeconds is a read-only property whose value is determined by

s ScansQueued

s Rate

.

.

.

If the session contains only counter output channels with PulseGeneration measurement
type, then DurationInSeconds represents the duration of the pulse train signal
generation.

Values
In a session with only input channels or counter output channels, you can enter a value in
seconds for the length of the acquisition. Changing the duration changes the number of
scans accordingly. By default, DurationInSeconds is set to 1 second.

Examples
Create a session object, add an analog input channel, and change the duration:
s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage');
s.DurationInSeconds = 2

s =

Data acquisition session using National Instruments hardware:
 Will run for 2 seconds (2000 scans) at 1000 scans/second.
 Operation starts immediately.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name

1 Base Properties — Alphabetical List

1-24

 ----- ---- --------- ------- ----------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts

See Also

Properties
NumberOfScans, Rate

Functions
addCounterInputChannel

 DurationInSeconds

1-25

DutyCycle
Duty cycle of output channel

Description
When working with the session-based interface, use the DutyCycle property to specify
the fraction of time that the generated pulse is in active state.

Duty cycle is the ratio between the duration of the pulse and the pulse period. For
example, if a pulse duration is 1 microsecond and the pulse period is 4 microseconds, the
duty cycle is 0.25. In a square wave, the time the signal is high is equal to the time the
signal is low.

For function generation channels using Digilent devices, each waveform adopts the duty
cycle

Examples
Specify Duty Cycle
Create a session object and add a 'PulseGeneration' counter output channel:

s = daq.createSession('ni');
ch = addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration')

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low
 InitialDelay: 2.5e-08
 Frequency: 100
 DutyCycle: 0.5
 Terminal: 'PFI0'
 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'PulseGeneration'

Change the DutyCycle to 0.25 and display the channel:

1 Base Properties — Alphabetical List

1-26

ch.DutyCycle

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low
 InitialDelay: 2.5e-08
 Frequency: 100
 DutyCycle: 0.25
 Terminal: 'PFI0'
 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'PulseGeneration'

You can change the channel duty cycle while the session is running when using counter
output channels.

See Also
Functions
addCounterOutputChannel

Properties
Gain | Offset | Phase

 DutyCycle

1-27

EncoderType
Encoding type of counter channel

Description
When working with the session-based interface, use the EncoderType property to specify
the encoding type of the counter input 'Position' channel.

Encoder types include:

• 'X1'
• 'X2'
• 'X4'
• 'TwoPulse'

Example

Change Encoder Type Property
Change the EncodeType property of a counter input channel with a Position
measurement type.

Create a session and add a counter input channel with Position measurement type.

s = daq.createSession('ni');
ch = addCounterInputChannel(s,'cDAQ1Mod5', 'ctr0', 'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1
 ZResetEnable: 0
 ZResetValue: 0
ZResetCondition: BothHigh
 TerminalA: 'PFI0'
 TerminalB: 'PFI2'
 TerminalZ: 'PFI1'

1 Base Properties — Alphabetical List

1-28

 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'

Change the channels encoder type to X2.

ch.EncoderType = 'X2'

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X2
 ZResetEnable: 0
 ZResetValue: 0
ZResetCondition: BothHigh
 TerminalA: 'PFI0'
 TerminalB: 'PFI2'
 TerminalZ: 'PFI1'
 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position

See Also
addCounterInputChannel

 EncoderType

1-29

EnhancedAliasRejectionEnable
Set enhanced alias rejection mode

Description
Enable or disable the enhanced alias rejection on your DSA device’s analog channel. See
“Synchronize DSA Devices” for more information. Enhanced alias reject is disabled by
default. This property only takes logical values.

s.Channels(1).EnhancedAliasRejectionEnable = 1

You cannot modify enhanced rejection mode if you are synchronizing your DSA device
using AutoSyncDSA.

Example

Enable Enhanced Alias Rejection
Enable enhanced alias rejection on a DSA device.

Create a session and add an analog input voltage channel using a DSA device.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'PXI1Slot2', 0, 'Voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'PXI1Slot2':

 Coupling: DC
 TerminalConfig: PseudoDifferential
 Range: -42 to +42 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.PXIDSAModule]
 MeasurementType: 'Voltage'
EnhancedAliasRejectionEnable: 0

Enable enhanced alias rejection.

1 Base Properties — Alphabetical List

1-30

ch.EnhancedAliasRejectionEnable = 1

ch =

Data acquisition analog input voltage channel 'ai0' on device 'PXI1Slot2':

 Coupling: DC
 TerminalConfig: PseudoDifferential
 Range: -42 to +42 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.PXIDSAModule]
 MeasurementType: 'Voltage'
EnhancedAliasRejectionEnable: 1

See Also
AutoSyncDSA

 EnhancedAliasRejectionEnable

1-31

ExcitationCurrent
Current of external source of excitation

Description
When working with the session-based interface, the ExcitationCurrent property
indicates the current in amps that you use to excite an IEPE accelerometer, IEPE
microphone, generic IEPE sensors, and RTDs.

The default ExcitationCurrent is typically determined by the device. If the device
supports a range of excitation currents, the default will be the lowest available value in
the range.

Example

Change Excitation Current Value
Change the excitation current value of a microphone channel.

Create a session and add an analog input microphone channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'
MaxSoundPressureLevel: 'Unknown'
 ExcitationCurrent: 0.002
 ExcitationSource: Internal
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -5.0 to +5.0 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

1 Base Properties — Alphabetical List

1-32

Change the excitation current value to 0.0040.

ch.ExcitationCurrent = .0040

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'
MaxSoundPressureLevel: 'Unknown'
 ExcitationCurrent: 0.004
 ExcitationSource: Internal
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -5.0 to +5.0 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

See Also

Properties
ExcitationSource

Functions
addAnalogInputChannel

 ExcitationCurrent

1-33

ExcitationSource
External source of excitation

Description
When working with the session-based interface, the ExcitationSource property
indicates the source of ExcitationVoltage for bridge measurements or ExcitationCurrent
for IEPE sensors and RTDs. Excitation source can be:

• Internal
• External
• None
• Unknown

By default, ExcitationSource is set to Unknown.

Example

Change Excitation Source
Change the excitation source of a microphone channel.

Create a session and add an analog input microphone channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod3',0,'Microphone')

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'
MaxSoundPressureLevel: 'Unknown'
 ExcitationCurrent: 0.004
 ExcitationSource: Unknown
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -5.0 to +5.0 Volts

1 Base Properties — Alphabetical List

1-34

 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

Change the excitation source value to 'Internal'.

ch.ExcitationSource = 'Internal'

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'
MaxSoundPressureLevel: 'Unknown'
 ExcitationCurrent: 0.004
 ExcitationSource: Internal
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -5.0 to +5.0 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

See Also

Properties
ExcitationCurrent

ExcitationVoltage

Functions
addAnalogInputChannel

 ExcitationSource

1-35

ExcitationVoltage
Voltage of excitation source

Description
When working with RTD measurements in the session-based interface, the
ExcitationVoltage property indicates the excitation voltage value to apply to bridge
measurements.

The default ExcitationVoltage is typically determined by the device. If the device
supports a range of excitation voltages, the default will be the lowest available value in
the range.

See Also

Properties
ExcitationSource

1 Base Properties — Alphabetical List

1-36

ExternalTriggerTimeout
Specify maximum wait time for external trigger

Description
The data acquisition session ExternalTriggerTimeout property specifies the
maximum amount of time in seconds the session waits for an external trigger before
timing out. To disable the timeout, set ExternalTriggerTimeout to a value of Inf.

Examples

Specify External Trigger Timeout
Specify how long the session waits for an external trigger before timing out.

Create a session and click on the Properties link to display session properties.

s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added.

Properties, Methods, Events

 AutoSyncDSA: false
 NumberOfScans: 1000
 DurationInSeconds: 1
 Rate: 1000
 IsContinuous: false
 NotifyWhenDataAvailableExceeds: 100
IsNotifyWhenDataAvailableExceedsAuto: true
 NotifyWhenScansQueuedBelow: 500
 IsNotifyWhenScansQueuedBelowAuto: true
 ExternalTriggerTimeout: 10

 ExternalTriggerTimeout

1-37

 TriggersPerRun: 1
 Vendor: National Instruments
 Channels: ''
 Connections: ''
 IsRunning: false
 IsLogging: false
 IsDone: false
 IsWaitingForExternalTrigger: false
 TriggersRemaining: 1
 RateLimit: ''
 ScansQueued: 0
 ScansOutputByHardware: 0
 ScansAcquired: 0

Change the timeout to 15 seconds.

s.ExternalTriggerTimeout = 15;

Specify External Trigger with Disabled Timeout
Set an external trigger on a session, without a timeout.

Create a session with an external trigger, then set its ExternalTriggerTimeout to Inf.

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1','ai0','Voltage');
addTriggerConnection(s,'External','Dev1/PFI0','StartTrigger');
s.ExternalTriggerTimeout = Inf;

See Also
Functions
addTriggerConnection

1 Base Properties — Alphabetical List

1-38

Frequency
Frequency of generated output

Description
When working with counter input channels, use the Frequency property to set the pulse
repetition rate of a counter input channel.

When working with function generation channel, data acquisition sessions, the rate of a
waveform is controlled by the channel Frequency property. To synchronize all operation
sin the session, set each channel generation rate individually, and change the session
Rate to match the channel generation rate.

The frequency value must fall within the specified FrequencyLimit values.

Values
Specify the frequency in hertz.

Examples

Set the Frequency of a Counter Input Channel
Create a session object and add a 'PulseGeneration' counter output channel:

s = daq.createSession('ni');
ch = addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration')

Change the Frequency to 200 and display the channel:
ch.Frequency = 200;

ch

ans =

 Frequency

1-39

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low
 InitialDelay: 2.5e-008
 Frequency: 200
 DutyCycle: 0.5
 Terminal: 'PFI12'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'PulseGeneration'

Set the Frequency of a Function Generator Channel
Create a waveform generation channel, and change the generation rate to 20000 scans
per second.

s = daq.createSession('digilent'):
fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine'
fgenCh.Frequency = 20000

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0
 Range: -5.0 to +5.0 Volts
 TerminalConfig: SingleEnded
 Gain: 1
 Offset: 0
 Frequency: 20000
 WaveformType: Sine
 FrequencyLimit: [0.0 25000000.0]
 Name: ''
 ID: '1'
 Device: [1x1 daq.di.DeviceInfo]
 MeasurementType: 'Voltage'

Tip You can change the channel frequency while the session is running when using
counter output channels.

1 Base Properties — Alphabetical List

1-40

See Also
Functions
addCounterInputChannel | addFunctionGeneratorChannel

Properties
FrequencyLimit

 Frequency

1-41

Gain
Waveform output gain

Description
When using waveform function generation channels, Gain represents the value by which
the scaled waveform data is multiplied to get the output data.

Values
The waveform gain can be between –5 and 5. Ensure that Gain x Voltage + Offset
falls within the valid rages of output voltage of the device.

Example
Change the gain of the waveform function generation channel to 2 volts.

s = daq.createSession('digilent');
fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine');
fgenCh.Gain = 2

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0
 Range: -5.0 to +5.0 Volts
 TerminalConfig: SingleEnded
 Gain: 2
 Offset: 0
 Frequency: 4096
 WaveformType: Sine
 FrequencyLimit: [0.0 25000000.0]
 Name: ''
 ID: '1'

1 Base Properties — Alphabetical List

1-42

 Device: [1x1 daq.di.DeviceInfo]
 MeasurementType: 'Voltage'

See Also
Functions
addFunctionGeneratorChannel

Properties
DutyCycle | Offset | Phase

 Gain

1-43

FrequencyLimit
Limit of rate of operation based on hardware configuration

Description
In the session-based interface, the read-only FrequencyLimit property displays the
minimum and maximum rates that the function generation channel supports.

Tip FrequencyLimit changes dynamically as the channel configuration changes.

Example
View waveform function generation channel’s generation rate limit.

s = daq.createSession('digilent')
fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine')
fgenCh.FrequencyLimit

ans =

[0.0 25000000.0]

See Also

Properties
Frequency

1 Base Properties — Alphabetical List

1-44

ID
ID of channel in session

Description
When working with the session-based interface, the ID property displays the ID of the
channel. You set the channel ID when you add the channel to a session object.

Examples
Create a session object, and add a counter input channel with the ID 'ctr0'.
s = daq.createSession('ni');
ch = addCounterInputChannel (s,'cDAQ1Mod5', 'ctr0', 'EdgeCount')

ch=

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising
 CountDirection: Increment
 InitialCount: 0
 Terminal: 'PFI8'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

Change CountDirection to 'Decrement':

ch.CountDirection = 'Decrement'

ch=

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising
 CountDirection: Decrement
 InitialCount: 0
 Terminal: 'PFI8'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

 ID

1-45

See Also
addCounterInputChannel

1 Base Properties — Alphabetical List

1-46

IdleState
Default state of counter output channel

Description
When working with the session-based interface, the IdleState property indicates the
default state of the counter output channel with a 'PulseGeneration' measurement
type when the counter is not running.

Values
IdleState is either 'High' or 'Low'.

Examples
Create a session object and add a 'PulseGeneration' counter output channel:

s = daq.createSession('ni');
s.addCounterOutputChannel('cDAQ1Mod5', 'ctr0', 'PulseGeneration');

Change the IdleState property to 'High' and display the channel:

s.Channels.IdleState = 'High';

s.Channels

ans =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: High
 InitialDelay: 2.5e-008
 Frequency: 100
 DutyCycle: 0.5
 Terminal: 'PFI12'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'PulseGeneration'

 IdleState

1-47

See Also
addCounterOutputChannel

1 Base Properties — Alphabetical List

1-48

InitialDelay
Delay until output channel generates pulses

Description
When working with the session-based interface, use the InitialDelay property to set
an initial delay on the counter output channel in which the counter is running but does
not generate any pulse.

Example

Specify Initial Delay
Set the initial delay on a counter output channel to 3.

Create a session and add a counter input channel.

s = daq.createSession('ni');
ch = addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration');

Set the initial delay.

ch.InitialDelay = 3

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low
 InitialDelay: 3
 Frequency: 100
 DutyCycle: 0.5
 Terminal: 'PFI0'
 Name: ''
 ID: 'ctr0'

 InitialDelay

1-49

 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'PulseGeneration'

See Also
addCounterOutputChannel

1 Base Properties — Alphabetical List

1-50

InitialCount
Specify initial count point

Description
When working with the session-based interface, use the InitialCount property to set
the point from which the device starts the counter.

Examples
Create a session object, add counter input channel, and change the InitialCount.
s = daq.createSession('ni');
ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising
 CountDirection: Increment
 InitialCount: 0
 Terminal: 'PFI8'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

Change InitalCount to 15:
ch.InitialCount = 15

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising
 CountDirection: Increment
 InitialCount: 15
 Terminal: 'PFI8'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

 InitialCount

1-51

See Also
Functions
addCounterInputChannel | resetCounters

1 Base Properties — Alphabetical List

1-52

IsContinuous
Specify if operation continues until manually stopped

Description
When working with the session-based interface, use IsContinuous to specify that the
session operation runs until you execute stop. When set to true, the session will run
continuously, acquiring or generating data until stopped.

Values
{false}

Set the IsContinuous property to false to make the session operation stop
automatically. This property is set to false by default.

true
Set the IsContinuous property to true to make the session operation run until you
execute stop.

Examples
Create a session object, add an analog input channel, and set the session to run until
manually stopped:
s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage');
s.IsContinuous = true

s =

Data acquisition session using National Instruments hardware:
 Will run continuously at 1000 scans/second until stopped.
 Operation starts immediately.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ----------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts

 IsContinuous

1-53

See Also

Properties
IsDone

Functions
stop,startBackground

1 Base Properties — Alphabetical List

1-54

IsDone
Indicate if session operation is complete

Description
The read-only IsDone property indicates that the session operation is complete.

Tip

• IsRunning indicates the session has started, but the hardware might not be acquiring
or generating data. It is still true while the hardware is waiting for a trigger, and while
transferring data in the process of stopping.

• IsLogging indicates the hardware is actively acquiring or generating data.
• IsDone indicates the session object has completed its operation, including all

necessary transfer of data.

Values
true

Value is logical 1 (true) when the session operation is complete.
false

Value is logical 0 (false) while the session operation is not complete.

Examples
Create an acquisition session and see if the operation is complete.

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'vVoltage');
s.queueOutputData(linspace(-1, 1, 1000)');
s.startBackground();
s.IsDone

 IsDone

1-55

ans =

 0

Issue a wait and see if the operation is complete.

wait(s)
s.IsDone

ans =

 1

See Also
Properties
IsLogging | IsRunning

Functions
startBackground

1 Base Properties — Alphabetical List

1-56

IsLogging
Indicate if hardware is acquiring or generating data

Description
The read-only IsLogging property indicates if the hardware is actively acquiring or
generating data.

Tip

• IsRunning indicates the session has started, but the hardware might not be acquiring
or generating data. It is still true while the hardware is waiting for a trigger, and while
transferring data in the process of stopping.

• IsLogging indicates the hardware is actively acquiring or generating data.
• IsDone indicates the session object has completed its operation, including all

necessary transfer of data.

Values
true

Value is logical 1 (true) if the device is acquiring or generating data.
false

Value is logical 0 (false) if the device is not acquiring or generating data.

Examples
Create and start a session.

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2','ao1','Voltage');
s.queueOutputData(linspace(-1,1,1000)');

 IsLogging

1-57

startBackground(s);
s.IsRunning

ans =

 1

The session is running, so check for device logging.

s.IsLogging

ans =

 0

This result might indicate that the device is waiting for an external trigger. After
triggering, wait until logging is complete.

wait(s)
s.IsDone

ans =

 1

See Also
Properties
IsDone | IsRunning

Functions
startBackground

1 Base Properties — Alphabetical List

1-58

IsNotifyWhenDataAvailableExceedsAuto
Control if NotifyWhenDataAvailableExceeds is set automatically

Description
When working with the session-based interface, the
IsNotifyWhenDataAvailableExceedsAuto property indicates if the
NotifyWhenDataAvailableExceeds property is set automatically, or you have set a specific
value.

Tip This property is typically used to set NotifyWhenDataAvailableExceeds back to its
default behavior.

Values
{true}

When the value is true, then the NotifyWhenDataAvailableExceeds property is set
automatically.

false
When the value is false, when you have set the NotifyWhenDataAvailableExceeds
property to a specific value.

Example

Enable Data Exceeds Notification
Change the IsNotifyWhenDataAvailableExceedsAuto to be able to set the
NotifyWhenDataAvailableExceeds property to a specific value.

Create a session and display the properties by clicking the Properties link.

s = daq.createSession('ni')

 IsNotifyWhenDataAvailableExceedsAuto

1-59

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added.

Properties, Methods, Events

 AutoSyncDSA: false
 NumberOfScans: 1000
 DurationInSeconds: 1
 Rate: 1000
 IsContinuous: false
 NotifyWhenDataAvailableExceeds: 100
IsNotifyWhenDataAvailableExceedsAuto: true
 NotifyWhenScansQueuedBelow: 500
 IsNotifyWhenScansQueuedBelowAuto: true
 ExternalTriggerTimeout: 10
 TriggersPerRun: 1
 Vendor: National Instruments
 Channels: ''
 Connections: ''
 IsRunning: false
 IsLogging: false
 IsDone: false
 IsWaitingForExternalTrigger: false
 TriggersRemaining: 1
 RateLimit: ''
 ScansQueued: 0
 ScansOutputByHardware: 0
 ScansAcquired: 0

Change the IsNotifyWhenDataAvailableExceedsAuto to

s.IsNotifyWhenDataAvailableExceedsAuto = false

s =

Data acquisition session using National Instruments hardware:

1 Base Properties — Alphabetical List

1-60

 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added.

See Also

Properties
NotifyWhenDataAvailableExceeds

Events
DataAvailable

 IsNotifyWhenDataAvailableExceedsAuto

1-61

IsNotifyWhenScansQueuedBelowAuto
Control if NotifyWhenScansQueuedBelow is set automatically

Description
When working with the session-based interface, the
IsNotifyWhenScansQueuedBelowAuto property indicates if the
NotifyWhenScansQueuedBelow property is set automatically, or you have set a specific
value.

Values
{true}

When the value is true, then NotifyWhenScansQueuedBelow is set automatically.
false

When the value is false, you have set NotifyWhenScansQueuedBelow property to a
specific value.

Example

Enable Notification When Scans Reach Below Specified Range
Change the IsNotifyWhenScansQueuedBelowAuto to be able to set the
NotifyWhenScansQueuedBelow property to a specific value.

Create a session and display the properties by clicking the Properties link.

s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.

1 Base Properties — Alphabetical List

1-62

 No channels have been added.

Properties, Methods, Events

 AutoSyncDSA: false
 NumberOfScans: 1000
 DurationInSeconds: 1
 Rate: 1000
 IsContinuous: false
 NotifyWhenDataAvailableExceeds: 100
IsNotifyWhenDataAvailableExceedsAuto: true
 NotifyWhenScansQueuedBelow: 500
 IsNotifyWhenScansQueuedBelowAuto: true
 ExternalTriggerTimeout: 10
 TriggersPerRun: 1
 Vendor: National Instruments
 Channels: ''
 Connections: ''
 IsRunning: false
 IsLogging: false
 IsDone: false
 IsWaitingForExternalTrigger: false
 TriggersRemaining: 1
 RateLimit: ''
 ScansQueued: 0
 ScansOutputByHardware: 0
 ScansAcquired: 0

Change the IsNotifyWhenDataAvailableExceedsAuto to

s.IsNotifyWhenScansQueuedBelowAuto = false

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added.

See Also
Properties
NotifyWhenScansQueuedBelow, ScansQueued

 IsNotifyWhenScansQueuedBelowAuto

1-63

Events
DataRequired

1 Base Properties — Alphabetical List

1-64

IsRunning
Indicate if session operation is in progress

Description
The read-only IsRunning property indicates the session operation is started and in
progress, whether or not the hardware is acquiring or generating data at the time.

Tip

• IsRunning indicates the session has started, but the hardware might not be acquiring
or generating data. It is still true while the hardware is waiting for a trigger, and while
transferring data in the process of stopping.

• IsLogging indicates the hardware is actively acquiring or generating data.
• IsDone indicates the session object has completed its operation, including all

necessary transfer of data.

Values
true

Value is logical 1 (true) while the session operation is in progress.
false

Value is logical 0 (false) while the session operation is not in progress, that is,
before it starts or after it stops.

Examples
Create an acquisition session, add a DataAvailable event listener and start the
acquisition.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage');

 IsRunning

1-65

lh = s.addlistener('DataAvailable', @plotData);

function plotData(src,event)
 plot(event.TimeStamps, event.Data)
end
startBackground(s);

See if the session is in progress.

s.IsRunning

ans =

 1

Wait until operation completes and see if session is in progress.

wait(s)
s.IsRunning

ans =

 0

See Also
Properties
IsDone | IsLogging

Functions
startBackground

1 Base Properties — Alphabetical List

1-66

IsSimulated
Indicate if device is simulated

Description
When working with the session-based interface, the IsSimulated property indicates if
the session is using a simulated device.

Values
true

When the value is true if the operation is in progress.
false

When the value is false if the operation is not in progress.

Examples
Discover available devices.

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -----------------------------
1 ni cDAQ1Mod1 National Instruments NI 9201
2 ni cDAQ2Mod1 National Instruments NI 9201
3 ni Dev1 National Instruments USB-6211
4 ni Dev2 National Instruments USB-6218
5 ni Dev3 National Instruments USB-6255
6 ni Dev4 National Instruments USB-6363
7 ni PXI1Slot2 National Instruments PXI-4461
8 ni PXI1Slot3 National Instruments PXI-4461

 IsSimulated

1-67

Examine properties of NI 9201, with the device id cDAQ1Mod1 with the index 1.

d(1)

ans =

ni: National Instruments NI 9201 (Device ID: 'cDAQ1Mod1')
 Analog input subsystem supports:
 -10 to +10 Volts range
 Rates from 0.1 to 800000.0 scans/sec
 8 channels ('ai0','ai1','ai2','ai3','ai4','ai5','ai6','ai7')
 'Voltage' measurement type

This module is in slot 4 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Properties, Methods, Events

Click the Properties link to see the properties of the device.

 ChassisName: 'cDAQ1'
 ChassisModel: 'cDAQ-9178'
 SlotNumber: 4
 IsSimulated: true
 Terminals: [48x1 cell]
 Vendor: National Instruments
 ID: 'cDAQ1Mod1'
 Model: 'NI 9201'
 Subsystems: [1x1 daq.ni.AnalogInputInfo]
 Description: 'National Instruments NI 9201'
RecognizedDevice: true

Note that the IsSimulated value is true, indicating that this device is simulated.

See Also

Properties
IsLogging, IsDone

1 Base Properties — Alphabetical List

1-68

Functions
startBackground

 IsSimulated

1-69

IsWaitingForExternalTrigger
Indicates if synchronization is waiting for an external trigger

Description
When working with the session-based interface, the read-
onlyIsWaitingForExternalTrigger property indicates if the acquisition or generation
session is waiting for a trigger from an external device. If you have added an external
trigger, this property displays true, if not, it displays false.

See Also
addTriggerConnection

1 Base Properties — Alphabetical List

1-70

MaxSoundPressureLevel
Sound pressure level for microphone channels

Description
When working with the session-based interface, use the MaxSoundPressureLevel set
the maximum sound pressure of the microphone channel in decibels.

Values
The maximum sound pressure level is based on the sensitivity and the voltage range of
your device. When you sent your device Sensitivity, the MaxSoundPressureLevel value
is automatically corrected to match the specified sensitivity value and the device voltage
range. You can also specify any acceptable pressure level in decibels. Refer to your
microphone specifications for more information.

Example

Change Maximum Sound Pressure of Microphone
Change the Sensitivity of a microphone channel and set the maximum sound pressure
level to 10.

Create a session and add a microphone channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'
MaxSoundPressureLevel: 'Unknown'
 ExcitationCurrent: 0.002
 ExcitationSource: Internal

 MaxSoundPressureLevel

1-71

 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -5.0 to +5.0 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

Set the channel’s sensitivity to 3 0.037.

ch.Sensitivity = 0.037

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037
MaxSoundPressureLevel: 136
 ExcitationCurrent: 0.002
 ExcitationSource: Internal
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -135 to +135 Pascals
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

Set the channel’s maximum sound pressure to 10 dbs.

ch.MaxSoundPressureLevel = 10

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037
MaxSoundPressureLevel: 10
 ExcitationCurrent: 0.002
 ExcitationSource: Internal
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -135 to +135 Pascals
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

1 Base Properties — Alphabetical List

1-72

MeasurementType
Channel measurement type

Description
When working with the session-based interface, the MeasurementType property displays
the selected measurement type for your channel.

Values
You can only use Audio measurement type with multichannel audio devices.

Counter measurement types include:

• 'EdgeCount' (input)
• 'PulseWidth' (input)
• 'Frequency'(input)
• 'Position'(input)
• 'PulseGeneration' (output)

Analog measurement types include:

• 'Voltage' (input and output)
• 'Thermocouple' (input)
• 'Current' (input and output)
• 'Accelerometer' (input)
• 'RTD' (input)
• 'Bridge' (input)
• 'Microphone' (input)
• 'IEPE' (input)

 MeasurementType

1-73

Examples
Create a session object, add a counter input channel, with the 'EdgeCount'
MeasurementType.
s = daq.createSession('ni');
ch = addCounterInputChannel (s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising
 CountDirection: Increment
 InitialCount: 0
 Terminal: 'PFI8'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

See Also
addAnalogInputChannel, addAnalogOutputChannel, addCounterInputChannel,
addCounterOutputChannel,

1 Base Properties — Alphabetical List

1-74

Name
Specify descriptive name for the channel

Description
When you add a channel, a descriptive name is stored in Name. By default there is no
name assigned to the channel. You can change the value of Name at any time.

Values
You can specify a character vector value for the name.

Examples
Change the name of an analog input channel
Create a session and add an analog input channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'Dev1', 0, 'Voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev1':

 Coupling: DC
 TerminalConfig: Differential
 Range: -10 to +10 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Voltage'

Change Name to 'AI-Voltage'.

ch.Name = 'AI-Voltage'

 Name

1-75

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev1':

 Coupling: DC
 TerminalConfig: Differential
 Range: -10 to +10 Volts
 Name: 'AI-Voltage'
 ID: 'ai0'
 Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Voltage'

See Also
addAnalogInputChannel

1 Base Properties — Alphabetical List

1-76

NominalBridgeResistance
Resistance of sensor

Description
When working with the session-based interface, the NominalBridgeResistance
property displays the resistance of a bridge– based sensor in ohms. This value is used to
calculate voltage.

You can specify any accepted positive value in ohms. The default value is 0 until you
change it. You must set the resistance to use the channel.

See Also
addAnalogInputChannel

 NominalBridgeResistance

1-77

NotifyWhenDataAvailableExceeds
Control firing of DataAvailable event

Description
The DataAvailable event is triggered when the number of scans available to the
session object exceeds the quantity specified in the
NotifyWhenDataAvailableExceeds property.

You cannot set the NotifyWhenDataAvailableExceeds property when the session is in
the prepared state, which can happen after running startForeground. In this case, call
release on the session before setting this property value.

Values
By default the DataAvailable event triggers when 1/10 second worth of data is
available for analysis. To specify a different threshold, change the value of
NotifyWhenDataAvailableExceeds.

Examples
Control Firing of Data Available Event
Add an event listener to display the total number of scans acquired and fire the event
when the data available exceeds specified amount.

Create the session and add an analog input voltage channel.

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev4',1,'Voltage');
lh = addlistener(s,'DataAvailable', ...
 @(src, event) disp(s.ScansAcquired));

The default the Rate is 1000 scans per second. The session is automatically configured to
fire the DataAvailable notification 10 times per second.

1 Base Properties — Alphabetical List

1-78

Increase the Rate to 800,000 scans per second, while the DataAvailable notification
automatically fires 10 times per second.

s.Rate = 800000;
s.NotifyWhenDataAvailableExceeds

ans =
 80000

Running the acquisition causes the number of scans acquired to be displayed by the
callback 10 times.

data = startForeground(s);

 80000

 160000

 240000

 320000

 400000

 480000

 560000

 640000

 720000

 800000

Increase NotifyWhenDataAvailableExceeds to 160,000.
NotifyWhenDataAvailableExceeds is no longer configured automatically when the
Rate changes.

s.NotifyWhenDataAvailableExceeds = 160000;
s.IsNotifyWhenDataAvailableExceedsAuto

ans =

 0

 NotifyWhenDataAvailableExceeds

1-79

Start the acquisition. The DataAvailable event is fired only five times per second.

data = startForeground(s);

 160000

 320000

 480000

 640000

 800000

Set IsNotifyWhenDataAvailableExceedsAuto back to true.

s.IsNotifyWhenDataAvailableExceedsAuto = true;
s.NotifyWhenDataAvailableExceeds

ans =
 80000

This causes NotifyWhenDataAvailableExceeds to set automatically when Rate
changes.

s.Rate = 50000;
s.NotifyWhenDataAvailableExceeds

ans =
 5000

See Also

Properties
IsNotifyWhenDataAvailableExceedsAuto

Events
DataAvailable

1 Base Properties — Alphabetical List

1-80

Functions
addlistener, startBackground

 NotifyWhenDataAvailableExceeds

1-81

NotifyWhenScansQueuedBelow
Control firing of DataRequired event

Description
When working with the session-based interface to generate output signals continuously,
the DataRequired event is fired when you need to queue more data. This occurs when
the ScansQueued property drops below the value specified in the
NotifyWhenScansQueuedBelow property.

Values
By default the DataRequired event fires when 1/2 second worth of data remains in the
queue. To specify a different threshold, change this property value to control when the
event is fired.

Example

Control When DataRequired Event Is Fired
Specify a threshold below which the DataRequired event fires.

Create a session and add an analog output channel.

s = daq.createSession('ni')
addAnalogOutputChannel(s,'cDAQ1Mod2', 0, 'Voltage')

Queue some output data.

outputData = (linspace(-1,1,1000))';
s.queueOutputData(outputData);

Set the threshold of scans queued to 100.

s.NotifyWhenScansQueuedBelow = 100;

1 Base Properties — Alphabetical List

1-82

Add an anonymous listener and generate the signal in the background:

lh = s.addlistener('DataRequired', ...
@(src,event) src.queueOutputData(outputData));

startBackground(s);

See Also

Properties
ScansQueued, IsNotifyWhenScansQueuedBelowAuto

Events
DataRequired

 NotifyWhenScansQueuedBelow

1-83

NumberOfScans
Number of scans for operation when starting

Description
When working with the session-based interface, use the NumberOfScans property to
specify the number of scans the session will acquire during the operation. Changing the
number of scans changes the duration of an acquisition. When the session contains output
channels, NumberOfScans becomes a read only property and the number of scans in a
session is determined by the amount of data queued.

Tips

• To specify length of the acquisition, use DurationInSeconds.
• To control length of the output operation, use queueOutputData.

Values
You can change the value only when you use input channels.

Example

Change Number of Scans
Create an acquisition session, add an analog input channel, and display the
NumberOfScans.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');
s.NumberOfScans

1 Base Properties — Alphabetical List

1-84

ans =

 1000

Change the NumberOfScans property.
s.NumberOfScans = 2000

s =

Data acquisition session using National Instruments hardware:
 Will run for 2000 scans (2 seconds) at 1000 scans/second.
 Operation starts immediately.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ----------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts

See Also

Properties
ScansQueued, DurationInSeconds

Functions
startForeground, startBackground, queueOutputData

 NumberOfScans

1-85

Offset
Specify DC offset of waveform

Description
When using waveform function generation channels, Offset represents offsetting of a
signal from zero, or the mean value of the waveform.

Values
The waveform offset can be between –5 and 5. Ensure that Gain x Voltage + Offset
falls within the valid rages of output voltage of the device.

Example
Change the offset of the waveform function generation channel to 2 volts.

s = daq.createSession('digilent');
fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine');
fgenCh.Offset = 2

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0
 Range: -5.0 to +5.0 Volts
 TerminalConfig: SingleEnded
 Gain: 0
 Offset: 2
 Frequency: 4096
 WaveformType: Sine
 FrequencyLimit: [0.0 25000000.0]
 Name: ''
 ID: '1'

1 Base Properties — Alphabetical List

1-86

 Device: [1x1 daq.di.DeviceInfo]
 MeasurementType: 'Voltage'

See Also
Functions
addFunctionGeneratorChannel

Properties
DutyCycle | Gain | Phase

 Offset

1-87

Phase
Waveform phase

Description
In a function generation channel, the Phase property specifies the period of waveform
cycle from its point of origin. Specify the values for Phase in time units.

Example
Set the phase of a waveform function generation channel to 33.

s = daq.createSession('digilent')
fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine')
fgenCh.Phase = 33

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 33
 Range: -5.0 to +5.0 Volts
 TerminalConfig: SingleEnded
 Gain: 1
 Offset: 0
 Frequency: 4096
 WaveformType: Sine
 FrequencyLimit: [0.0 25000000.0]
 Name: ''
 ID: '1'
 Device: [1x1 daq.di.DeviceInfo]
 MeasurementType: 'Voltage'

See Also
Functions
addFunctionGeneratorChannel

1 Base Properties — Alphabetical List

1-88

Properties
DutyCycle | Gain | Offset

 Phase

1-89

R0
Specify resistance value

Description
Use this property to specify the resistance of the device.

You can specify any acceptable value in ohms. When you add an RTD Channel, the
resistance is unknown and the R0 property displays Unknown. You must change this value
to set the resistance of this device to the temperature you want.

Example

Set RTD Channels Resistance
Create a session and add an RTD channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');

Change the channels resistance to 100°C.

ch.R0 = 100

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7':

 Units: Celsius
 RTDType: Unknown
 RTDConfiguration: Unknown
 R0: 100
ExcitationCurrent: 0.0005
 ExcitationSource: Internal
 Coupling: DC
 TerminalConfig: Differential
 Range: -200 to +660 Celsius

1 Base Properties — Alphabetical List

1-90

 Name: ''
 ID: 'ai3'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'RTD'
 ADCTimingMode: HighResolution

See Also

Properties
RTDConfiguration, RTDType

 R0

1-91

Range
Specify channel measurement range

Description
When working with the session-based interface, use the Range property to indicate the
measurement range of a channel.

Values
Range is not applicable for counter channels. For analog channels, value is dependent on
the measurement type. This property is read-only for all measurement types except
'Voltage'. You can specify a range in volts for analog channels.

Examples

Set Channel Range
Specify the range of an analog input voltage channel.

Create a session and add an analog input channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod7',3,'voltage');

Set a range of -60 to +60 volts.

ch.Range = [-60,60];

Display Ranges Available
See what ranges your channel supports before you set the channel range.

Create a session and add an analog input channel.

1 Base Properties — Alphabetical List

1-92

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'Dev1',3,'voltage');

Display channel device.

ch.Device

ans =

ni: National Instruments USB-6211 (Device ID: 'Dev1')
 Analog input subsystem supports:
 4 ranges supported
 Rates from 0.1 to 250000.0 scans/sec
 16 channels ('ai0' - 'ai15')
 'Voltage' measurement type

 Analog output subsystem supports:
 -10 to +10 Volts range
 Rates from 0.1 to 250000.0 scans/sec
 2 channels ('ao0','ao1')
 'Voltage' measurement type

 Digital subsystem supports:
 8 channels ('port0/line0' - 'port1/line3')
 'InputOnly','OutputOnly' measurement types

 Counter input subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'PulseGeneration' measurement type

Create a subsystems object.

sub = ch.Device.Subsystems

sub =

Analog input subsystem supports:
 4 ranges supported
 Rates from 0.1 to 250000.0 scans/sec

 Range

1-93

 16 channels ('ai0' - 'ai15')
 'Voltage' measurement type
Properties, Methods, Events

Analog output subsystem supports:
 -10 to +10 Volts range
 Rates from 0.1 to 250000.0 scans/sec
 2 channels ('ao0','ao1')
 'Voltage' measurement type
Properties, Methods, Events

Digital subsystem supports:
 8 channels ('port0/line0' - 'port1/line3')
 'InputOnly','OutputOnly' measurement types
Properties, Methods, Events

Counter input subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'EdgeCount','PulseWidth','Frequency','Position' measurement types
Properties, Methods, Events

Counter output subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'PulseGeneration' measurement type
Properties, Methods, Events

Display the ranges available on the analog input subsystem.

sub(1).RangesAvailable

ans =

-0.20 to +0.20 Volts,-1.0 to +1.0 Volts,-5.0 to +5.0 Volts,-10 to +10 Volts

See Also
daq.createSession,addAnalogInputChannel

1 Base Properties — Alphabetical List

1-94

Rate
Rate of operation in scans per second

Description
When working with the session-based interface, use the Rate property to set the number
of scans per second.

Note Many hardware devices accept fractional rates.

Tip On most devices, the hardware limits the exact rates that you can set. When you set
the rate, Data Acquisition Toolbox sets the rate to the next higher rate supported by the
hardware. If the exact rate affects your analysis of the acquired data, obtain the actual
rate after you set it, and then use that in your analysis.

Values
You can set the rate to any positive nonzero scalar value supported by the hardware in its
current configuration.

Examples

Change Session Rate
Create a session and add an analog input channel.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');

Change the rate to 10000.

s.Rate = 10000

 Rate

1-95

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (10000 scans) at 10000 scans/second.
 Operation starts immediately.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ----------------- ---------------- ----
 1 ai cDAQ1Mod1 ai1 Voltage (Diff) -10 to +10 Volts

See Also
Properties
DurationInSeconds | NumberOfScans | RateLimit | StandardSampleRates |
UseStandardSampleRates

Topics
“Multichannel Audio Session Rate”

1 Base Properties — Alphabetical List

1-96

RateLimit
Limit of rate of operation based on hardware configuration

Description
In the session-based interface, the read-only RateLimit property displays the minimum
and maximum rates that the session supports, based on the device configuration for the
session.

Tip RateLimit changes dynamically as the session configuration changes.

Example

Display Sessions Rate Limit
Create session and add an analog input channel.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');

Examine the session’s rate limit.

s.RateLimit

ans =

 1.0e+05 *

 RateLimit

1-97

 0.0000 2.5000

See Also

Properties
Rate

1 Base Properties — Alphabetical List

1-98

RTDConfiguration
Specify wiring configuration of RTD device

Description
Use this property to specify the wiring configuration for measuring resistance.

When you create an RTD channel, the wiring configuration is unknown and the
RTDConfiguration property displays Unknown. You must change this to one of the
following valid configurations:

• TwoWire
• ThreeWire
• FourWire

Example

Specify Channel’s RTD Configuration
Specify an RTD channels wiring configuration.

Create a session and add an RTD channel to it.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');

Change the RTDConfiguration to ThreeWire.

ch.RTDConfiguration = 'ThreeWire'

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7':

 Units: Celsius
 RTDType: Unknown

 RTDConfiguration

1-99

 RTDConfiguration: ThreeWire
 R0: 'Unknown'
ExcitationCurrent: 0.0005
 ExcitationSource: Internal
 Coupling: DC
 TerminalConfig: Differential
 Range: -200 to +660 Celsius
 Name: ''
 ID: 'ai3'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'RTD'
 ADCTimingMode: HighResolution

See Also

Properties
R0, RTDType

1 Base Properties — Alphabetical List

1-100

RTDType
Specify sensor sensitivity

Description
Use this property to specify the sensitivity of a standard RTD sensor in the session-based
interface. A standard RTD sensor is defined as a 100–ohm platinum sensor.

When you create an RTD channel, the sensitivity is unknown and the RTDType property
displays Unknown. You must change this to one of these valid values:

• Pt3750
• Pt3851
• Pt3911
• Pt3916
• Pt3920
• Pt3928

Example

Set RTD Sensor Type
Set an RTD sensor’s sensitivity type.

Create a session and add an RTD channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');

Set the RTDType to Pt3851.

ch.RTDType = 'Pt3851'

ch =

 RTDType

1-101

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7':

 Units: Celsius
 RTDType: Pt3851
 RTDConfiguration: ThreeWire
 R0: 'Unknown'
ExcitationCurrent: 0.0005
 ExcitationSource: Internal
 Coupling: DC
 TerminalConfig: Differential
 Range: -200 to +660 Celsius
 Name: ''
 ID: 'ai3'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'RTD'
 ADCTimingMode: HighResolution

See Also
addAnalogInputChannel

Properties
RTDConfiguration, RTDType

1 Base Properties — Alphabetical List

1-102

ScansAcquired
Number of scans acquired during operation

Description
In the session-based interface, the ScansAcquired property displays the number of
scans acquired after you start the operation using startBackground.

Values
The read-only value represents the number of scans acquired by the hardware. This value
is reset each time you call startBackground.

Example
Display Number of Scans Acquired
Acquire analog input data and display the number of scans acquired.

Create a session, add an analog input channel,

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'Dev1','ai1','voltage');

See how many scan the session had acquired.

s.ScansAcquired

ans =

 0

Start the acquisition and see how many scans the session has acquired

startForeground(s);
s.ScansAcquired

 ScansAcquired

1-103

ans =

 1000

See Also

Properties
NumberOfScans, ScansOutputByHardware

Functions
startBackground

1 Base Properties — Alphabetical List

1-104

ScansOutputByHardware
Indicate number of scans output by hardware

Description
In the session-based interface, the ScansOutputByHardware property displays the
number of scans output by the hardware after you start the operation using
startBackground.

Tip The value depends on information from the hardware.

Values
This read-only value is based on the output of the hardware configured for your session.

Example

Display Scans Output by Hardware
Generate data on an analog output channel and to see how many scans are output by the
hardware.

Create a session and add an analog output channel.

s = daq.createSession('ni');
ch = addAnalogOutputChannel(s,'Dev1','ao1','voltage');

Queue some output data and start the generation.

s.queueOutputData(linspace(-1, 1, 1000)');
startForeground(s);

Examine the ScansOutputByHardware property.

 ScansOutputByHardware

1-105

s.ScansOutputByHardware

ans =

 1000

See Also

Properties
ScansAcquired, ScansQueued

Functions
queueOutputData, startBackground

1 Base Properties — Alphabetical List

1-106

ScansQueued
Indicate number of scans queued for output

Description
In the session-based interface, the ScansQueued property displays the number of scans
queued for output queueOutputData. The ScansQueued property increases when you
successfully call queueOutputData. The ScansQueued property decreases when the
hardware reports that it has successfully output data.

Values
This read-only value is based on the number of scans queued.

Example

Display Scans Queued
Queue some output data to an analog output channel and examine the session properties
to see how many scans are queued.

Create a session and add an analog output channel.

s = daq.createSession('ni');
ch = addAnalogOutputChannel(s,'Dev1','ao1','voltage');

Queue some output data and call the ScansQueued property to see number of data
queued.

s.queueOutputData(linspace(-1,1,1000)');
s.ScansQueued

s.ScansQueued

 ScansQueued

1-107

ans =

 1000

See Also

Properties
ScansOutputByHardware

Functions
queueOutputData

1 Base Properties — Alphabetical List

1-108

Sensitivity
Sensitivity of an analog channel

Description
When working with the session-based interface, the Sensitivity property to set the
accelerometer or microphone sensor channel.

Sensitivity in an accelerometer channel is expressed as v

g
, or volts per gravity.

Sensitivity in a microphone channel is expressed as v

pa
, or volts per pascal.

Examples
Create a session object, add an analog input channel, with the 'accelerometer'
MeasurementType.
s = daq.createSession('ni');
s.addAnalogInputChannel('Dev4', 'ai0', 'accelerometer')

Data acquisition session using National Instruments hardware:
 Will run for 1 second (2000 scans) at 2000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- -------------------------- ------------------ ----
 1 ai Dev4 ai0 Accelerometer (PseudoDiff) -5.0 to +5.0 Volts

Change the Sensitivity to 10.2e-3 V/G:
ch1 = s.Channels(1)
ch1.Sensitivity = 10.2e-3

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (2000 scans) at 2000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- -------------------------- ---------------------- ----
 1 ai Dev4 ai0 Accelerometer (PseudoDiff) -490 to +490 Gravities

 Sensitivity

1-109

See Also
addAnalogInputChannel

1 Base Properties — Alphabetical List

1-110

ShuntLocation
Indicate location of channel’s shunt resistor

Description
When working with the session-based interface, ShuntLocation on the analog input
current channel indicates if the shunt resistor is located internally on the device or
externally. Values are:

• 'Internal': when the shunt resistor is located internally.
• 'External': when the shunt resistor is located externally.

If your device supports an internal shunt resistor, this property is set to Internal by
default. If the shunt location is external, you must specify the shunt resistance value.

Example

Specify Shunt Location
Set the shunt location of an analog input current channel.

Create a session and add an analog input current channel.

s = daq.createSession('ni')
ch = addAnalogInputChannel(s,'cDAQ1Mod7',0,'Current');

Set the ShuntLocation to Internal.

ch.ShuntLocation = 'Internal'

ch =

Data acquisition analog input current channel 'ai0' on device 'cDAQ1Mod7':

 ShuntLocation: Internal
ShuntResistance: 20
 Coupling: DC
 TerminalConfig: Differential

 ShuntLocation

1-111

 Range: -0.025 to +0.025 A
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Current'
 ADCTimingMode: HighResolution

See Also
ShuntResistance

1 Base Properties — Alphabetical List

1-112

ShuntResistance
Resistance value of channel’s shunt resistor

Description
When working with the session-based interface, the analog input current channel’s
ShuntResistance property indicates resistance in ohms. This value is automatically set
if the shunt resistor is located internally on the device and is read only.

Note Before starting an analog output channel with an external shunt resistor, specify
the shunt resistance value.

Example

Specify Shunt Resistance
Set the shunt resistance of an analog input current channel.

Create a session and add an analog input current channel.

s = daq.createSession('ni')
ch = addAnalogInputChannel(s,'cDAQ1Mod7',0,'Current');

Set the ShuntLocation to External and the ShuntResistance to 20.

ch.ShuntLocation = 'External';
ch.ShuntResistance = 20

ch =

Data acquisition analog input current channel 'ai0' on device 'cDAQ1Mod7':

 ShuntLocation: External
ShuntResistance: 20
 Coupling: DC
 TerminalConfig: Differential
 Range: -0.025 to +0.025 A
 Name: ''

 ShuntResistance

1-113

 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Current'
 ADCTimingMode: HighResolution

See Also
ShuntLocation

1 Base Properties — Alphabetical List

1-114

Source
Indicates trigger source terminal

Description
When working with the session-based interface, the Source property indicates the device
and terminal to which you added a trigger.

Example

View Clock Connection Source
Create an external clock connection and view the connection properties.

Create a session and add a digital input channel.

s = daq.createSession('ni');
ch = addDigitalChannel(s,'Dev1','Port0/Line2','InputOnly');

Add an external scan clock connection.

s.addClockConnection('External','Dev1/PFI0','ScanClock')

ans =

Scan Clock is provided externally and will be received by 'Dev1' at terminal 'PFI0'.

 Source: 'External'
 Destination: 'Dev1/PFI0'
 Type: ScanClock

See Also
DestinationaddTriggerConnection

 Source

1-115

StandardSampleRates
Display standard rates of sampling

Description
This property displays the standard sample rates supported by your audio device. You can
choose to use the standard rates or use values within the given range. See
UseStandardSampleRates for more information.

Standard sample rates for DirectSound audio devices are:

• 8000
• 8192
• 11025
• 16000
• 22050
• 32000
• 44100
• 47250
• 48000
• 50000
• 88200
• 96000
• 176400
• 192000
• 352800

1 Base Properties — Alphabetical List

1-116

Example

Set Rate of an Audio Session
Specify a nonstandard sample rate for a session with multichannel audio devices.

Create a session and add an audio channel.

s = daq.createSession('directsound')
ch = addAudioInputChannel(s,'Audio1',1);

Specify the session to use nonstandard sample rates.

s.UseStandardSampleRates = false

Data acquisition session using DirectSound hardware:
 Will run for 1 second (44100 scans) at 44100 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ------------- ----
 1 audi Audio1 1 Audio -1.0 to +1.0

Change the session rate to 85000.

s.Rate = 85000

s =

Data acquisition session using DirectSound hardware:
 Will run for 1 second (85000 scans) at 85000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ------------- ----
 1 audi Audio1 1 Audio -1.0 to +1.0

See Also
BitsPerSample | Rate | UseStandardSampleRates | addAudioInputChannel |
addAudioOutputChannel

 StandardSampleRates

1-117

Topics
“Multichannel Audio Session Rate”

1 Base Properties — Alphabetical List

1-118

Terminal
PFI terminal of counter subsystem

Description
The Terminal property indicates the counter subsystem’s corresponding PFI terminal.

Example

Determine Counter Input Channel Terminal
Determine the terminal on the counter channel connected to your input signal.

Create a session and add a counter input channel.

s = daq.createSession('ni');
ch = addCounterInputChannel(s,'cDAQ1Mod5','ctr0','PulseWidth');

Examine the Terminal property of the channel.

ch.Terminal

ans =

PFI1

See Also
addCounterInputChannel, addCounterOutputChannel

 Terminal

1-119

TerminalConfig
Specify terminal configuration

Description
Use the TerminalConfig to change the configuration of your analog channel. The
property displays the hardware default configuration. You can change this to

• SingleEnded
• SingleEndedNonReferenced
• Differential
• PseudoDifferential

Example

Change Analog Channel Terminal Configuration
Change the terminal configuration of an analog input channel.

Create a session and add an analog input voltage channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'dev5',0,'voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev5':

 Coupling: DC
 TerminalConfig: Differential
 Range: -10 to +10 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Voltage'

1 Base Properties — Alphabetical List

1-120

Change the TerminalConfig of the channel to SingleEnded.

ch.TerminalConfig = 'SingleEnded'

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev5':

 Coupling: DC
 TerminalConfig: SingleEnded
 Range: -10 to +10 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Voltage'

See Also
addAnalogInputChannel | addAnalogOutputChannel

 TerminalConfig

1-121

Terminals
Terminals available on device or CompactDAQ chassis

Description
When working with the session-based interface, the Terminals on the device or the
CompactDAQ chassis lists all available terminals. The list includes terminals available for
trigger and clock connections. When you access the Terminals property on modules on
a CompactDAQ chassis, the terminals are on the chassis, not on the module.

Examples

Display Device Terminals
Discover available devices.

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- ------------------------------
1 ni cDAQ1Mod1 National Instruments NI 9205
2 ni cDAQ1Mod2 National Instruments NI 9263
3 ni cDAQ1Mod3 National Instruments NI 9234
4 ni cDAQ1Mod4 National Instruments NI 9201
5 ni cDAQ1Mod5 National Instruments NI 9402
6 ni cDAQ1Mod6 National Instruments NI 9213
7 ni cDAQ1Mod7 National Instruments NI 9219
8 ni cDAQ1Mod8 National Instruments NI 9265

Access the Terminals property of NI 9205 with index 1.

d(1).Terminals

1 Base Properties — Alphabetical List

1-122

ans =

 'cDAQ1/PFI0'
 'cDAQ1/PFI1'
 'cDAQ1/20MHzTimebase'
 'cDAQ1/80MHzTimebase'
 'cDAQ1/ChangeDetectionEvent'
 'cDAQ1/AnalogComparisonEvent'
 'cDAQ1/100kHzTimebase'
 'cDAQ1/SyncPulse0'
 'cDAQ1/SyncPulse1'
 .
 .
 .

See Also

Functions
daq.getDevices, addTriggerConnection,addClockConnection

 Terminals

1-123

ThermocoupleType
Select thermocouple type

Description
When working with the session-based interface, use the ThermocoupleType property to
select the type of thermocouple you will use to make your measurements. Select the type
based on the temperature range and sensitivity you need, according to the NIST
Thermocouple Types Definitions.

Values
You can set the ThermocoupleType to:

• 'J'
• 'K'
• 'N'
• 'R'
• 'S'
• 'T'
• 'B'
• 'E'

By default the thermocouple type is 'Unknown'.

Example

Specify Thermocouple Type
Create a session and add an analog input channel with 'Thermocouple' measurement
type.

1 Base Properties — Alphabetical List

1-124

https://srdata.nist.gov/its90/tables/table_i.html

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod6','ai1','Thermocouple')

ch =

Data acquisition analog input thermocouple channel 'ai1' on device 'cDAQ1Mod6':

 Units: Celsius
ThermocoupleType: Unknown
 Range: 0 to +750 Celsius
 Name: ''
 ID: 'ai1'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Thermocouple'
 ADCTimingMode: HighResolution

Set the ThermocoupleType property to 'J'.

ch.Thermocoupletype = 'J'

ch =

Data acquisition analog input thermocouple channel 'ai1' on device 'cDAQ1Mod6':

 Units: Celsius
ThermocoupleType: J
 Range: 0 to +750 Celsius
 Name: ''
 ID: 'ai1'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Thermocouple'
 ADCTimingMode: HighResolution

See Also
Functions
addAnalogInputChannel

External Websites
NIST ITS-90 Thermocouple Database

 ThermocoupleType

1-125

https://srdata.nist.gov/its90/main/its90_main_page.html

TriggerCondition
Specify condition that must be satisfied before trigger executes

Description
When working with the session-based interface, use the TriggerCondition property to
specify the signal condition that executes the trigger, which synchronizes operations on
devices in a session. For more information, see “Synchronization”.

Values
Set the trigger condition to RisingEdge or FallingEdge.

Examples

Specify Session Connection Trigger Condition
Create a session and add channels and trigger to the session.

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1', 0, 'voltage');
addAnalogInputChannel(s,'Dev2', 0, 'voltage');
addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

Change the trigger condition to FallingEdge.

connection = s.Connections(1)
connection.TriggerCondition = 'FallingEdge'

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.

 Trigger Connection added. (Details)

1 Base Properties — Alphabetical List

1-126

 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ---------------- ----
 1 ai Dev1 ai0 Voltage (Diff) -10 to +10 Volts
 2 ai Dev2 ai0 Voltage (Diff) -10 to +10 Volts

Click on (Details) to see the connection details.
Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by 'Dev2' at terminal 'PFI0'.

 TriggerType: 'Digital'
TriggerCondition: FallingEdge
 Source: 'Dev1/PFI4'
 Destination: 'Dev2/PFI0'
 Type: StartTrigger

See Also
addTriggerConnection

Properties
TriggerType

 TriggerCondition

1-127

TriggersPerRun
Indicate the number of times the trigger executes in an operation

Description
When working with the session-based interface, the TriggersPerRun property indicates
the number of times the specified trigger executes for one acquisition or generation
session.

Examples

Specify Number of Triggers Per Operation
Create a session and add channels and trigger to the session.

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1', 0, 'voltage');
addAnalogInputChannel(s,'Dev2', 0, 'voltage');
addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

Display Session’s TriggersPerRun Property.

s.TriggersPerRun

ans =

 1

Set the trigger to run twice during the operation.

s.TriggersPerRun = 2

s =

Data acquisition session using National Instruments hardware:
 Will run 2 times for 1 second (1000 scans) at 1000 scans/second.

1 Base Properties — Alphabetical List

1-128

 Trigger Connection added. (Details)

 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ---------------- ----
 1 ai Dev1 ai0 Voltage (Diff) -10 to +10 Volts
 2 ai Dev2 ai0 Voltage (Diff) -10 to +10 Volts

See Also
addTriggerConnection

 TriggersPerRun

1-129

TriggersRemaining
Indicates the number of trigger to execute in an operation

Description
When working with the session-based interface, the TriggersRemaining property
indicates the number of trigger remaining for this acquisition or generation session. This
value depends on the number of triggers set using TriggersPerRun.

Examples

Display Number of Triggers Remaining in Operation
Create a session and add channels and trigger to the session.

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1', 0, 'voltage');
addAnalogInputChannel(s,'Dev2', 0, 'voltage');
addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

Display Session’s TriggersRemaining Property.

s.TriggersRemaining

ans =

 1

See Also
addTriggerConnection

1 Base Properties — Alphabetical List

1-130

TriggerType
Type of trigger executed

Description
This read-only property displays the type of trigger that the source device executes to
synchronize operations in the session. Currently all trigger types are digital.

See Also

Functions
addTriggerConnection

Properties
TriggerCondition

 TriggerType

1-131

Units
Specify unit of RTD measurement

Description
Use this property to specify the temperature unit of the analog input channel with RTD
measurement type in the session-based interface.

You can specify temperature values as:

• Celsius (Default)
• Fahrenheit
• Kelvin
• Rankine

Example

Change RTD Unit
Change the unit of an RTD channel.

Create a session, add an analog input RTD channel, and display channel properties.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'RTD')

ch =

Data acquisition analog input RTD channel 'ai0' on device 'cDAQ1Mod7':

 Units: Celsius
 RTDType: Unknown
 RTDConfiguration: Unknown
 R0: 'Unknown'
ExcitationCurrent: 0.0005
 ExcitationSource: Internal

1 Base Properties — Alphabetical List

1-132

 Coupling: DC
 TerminalConfig: Differential
 Range: -200 to +660 Celsius
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'RTD'
 ADCTimingMode: HighResolution

Change the Units property from Celsius to Fahrenheit.

ch.Units = 'Fahrenheit'

ch =

Data acquisition analog input RTD channel 'ai0' on device 'cDAQ1Mod7':

 Units: Fahrenheit
 RTDType: Unknown
 RTDConfiguration: Unknown
 R0: 'Unknown'
ExcitationCurrent: 0.0005
 ExcitationSource: Internal
 Coupling: DC
 TerminalConfig: Differential
 Range: -328 to +1220 Fahrenheit
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'RTD'
 ADCTimingMode: HighResolution

See Also

Class
addAnalogInputChannel

 Units

1-133

UserData
Custom data

Description
Manipulate custom data for a data acquisition session object using the UserData
property. The property is never read-only. Its value can be any MATLAB® data type and
format.

Examples
Create a session and define its UserData property fields.

s = daq.createSession('ni');
s.UserData.Data = [];
s.UserData.TimeStamps = [];
s.UserData.StartTime = [];

Set the start time, and append event information to the log fields stored in UserData.

s.UserData.StartTime = eventData.TriggerTime;
s.UserData.Data = [s.UserData.Data; eventData.Data];
s.UserData.TimeStamps = [s.UserData.TimeStamps; eventData.TimeStamps];

See Also
Functions
daq.createSession

1 Base Properties — Alphabetical List

1-134

UseStandardSampleRates
Configure session to use standard sample rates

Description
Use this property to specify if your audio channel uses standard sample rates supported
by your device or a user-specified value. To use non-standard sample rates, set the value
to false and set the sessions’s Rate to the desired value.

Example

Change Acquisition Rate
Add an audio channel to a session and change the UseStandardSampleRates property.

s = daq.createSession('directsound');
addAudioInputChannel(s,Audio1,1);
s.UseStandardSampleRates = false

s =

Data acquisition session using DirectSound hardware:
 Will run for 1 second (44100 scans) at 44100 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ------------- ----
 1 audi Audio1 1 Audio -1.0 to +1.0

Specify a different scan rate.

s.Rate = 8500

s =

Data acquisition session using DirectSound hardware:
 Will run for 1 second (8500 scans) at 8500 scans/second.
 Number of channels: 1

 UseStandardSampleRates

1-135

 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ------------- ----
 1 audi Audio3 1 Audio -1.0 to +1.0

See Also
Rate | StandardSampleRates | addAudioInputChannel | addAudioOutputChannel

Topics
“Multichannel Audio Session Rate”

1 Base Properties — Alphabetical List

1-136

Vendor
Vendor information associated with session object

Description
In the session-based interface, the Vendor property displays information about the
vendor.

Values
a daq.Vendor object that represents the vendor associated with the session.

Examples
Use the daq.getVendors to get information about vendors.

s = daq.createSession('ni');
v = s.Vendor

v =

Data acquisition vendor 'National Instruments':

 ID: 'ni'
 FullName: 'National Instruments'
AdaptorVersion: '3.3 (R2013a)'
 DriverVersion: '9.2.3 NI-DAQmx'
 IsOperational: true

Properties, Methods, Events

Additional data acquisition vendors may be available as downloadable support packages.
Open the Support Package Installer to install additional vendors.

 Vendor

1-137

See Also
daq.createSession

1 Base Properties — Alphabetical List

1-138

WaveformType
Function generator channel waveform type

Description
This read-only property displays the channel waveform type that you specified while
creating a function generator channel in a session. Supported waveform types are:

• 'Sine'
• 'Square'
• 'Triangle'
• 'RampUp'
• 'RampDown'
• 'DC'
• 'Arbitrary'

Example
Display the channel’s waveform type.

fgenCh.WaveformType

ans =

 Sine

 WaveformType

1-139

ZResetCondition
Reset condition for Z-indexing

Description
When working with the session-based interface, use the ZResetCondition property to
specify reset conditions for Z-indexing of counter Input 'Position' channels. Accepted
values are:

• 'BothHigh'
• 'BothLow'
• 'AHigh'
• 'BHigh'

Example

Change Counter Channel Z Reset Condition
Create a session and add a counter input Position channel.

s = daq.createSession('ni');
ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1
 ZResetEnable: 0
 ZResetValue: 0
ZResetCondition: BothHigh
 TerminalA: 'PFI0'
 TerminalB: 'PFI2'
 TerminalZ: 'PFI1'
 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'

1 Base Properties — Alphabetical List

1-140

Change the ZResetCondition to BothLow.

ch.ZResetCondition = 'BothLow'

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1
 ZResetEnable: 0
 ZResetValue: 0
ZResetCondition: BothLow
 TerminalA: 'PFI0'
 TerminalB: 'PFI2'
 TerminalZ: 'PFI1'
 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'

See Also
addCounterInputChannel

 ZResetCondition

1-141

ZResetEnable
Enable reset for Z-indexing

Description
Use the ZResetEnable property to allow the Z-indexing to be reset on a counter input
'Position' channel.

Example

Reset Z Indexing on Counter Channel
Create a session and add a counter input Position channel.

s = daq.createSession('ni');
ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1
 ZResetEnable: 0
 ZResetValue: 0
ZResetCondition: BothHigh
 TerminalA: 'PFI0'
 TerminalB: 'PFI2'
 TerminalZ: 'PFI1'
 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'

Change the ZResetEnable property value to 1.

ch.ZResetEnable = 1

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

1 Base Properties — Alphabetical List

1-142

 EncoderType: X1
 ZResetEnable: 1
 ZResetValue: 0
ZResetCondition: BothHigh
 TerminalA: 'PFI0'
 TerminalB: 'PFI2'
 TerminalZ: 'PFI1'
 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'

See Also

Class
addCounterInputChannel

 ZResetEnable

1-143

ZResetValue
Reset value for Z-indexing

Description
When working with the session-based interface, use the ZResetValue property to specify
the reset value for Z-indexing on a counter input 'Position' channel.

Example

Specify Z Indexing Value
Create a session and add a counter input Position channel.

s = daq.createSession('ni');
ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1
 ZResetEnable: 0
 ZResetValue: 0
ZResetCondition: BothHigh
 TerminalA: 'PFI0'
 TerminalB: 'PFI2'
 TerminalZ: 'PFI1'
 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'

Change the ZResetValue to 62.

ch.ZResetValue = 62

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

1 Base Properties — Alphabetical List

1-144

 EncoderType: X1
 ZResetEnable: 1
 ZResetValue: 62
ZResetCondition: BothHigh
 TerminalA: 'PFI0'
 TerminalB: 'PFI2'
 TerminalZ: 'PFI1'
 Name: ''
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'

See Also

Class
addCounterInputChannel

 ZResetValue

1-145

Device-Specific Properties —
Alphabetical List

2

Coupling
Specify input coupling mode

Description
The Coupling property indicates the coupling mode used for the analog input signal
connection. You cannot change the value for devices that support only one mode. For
devices that support both AC and DC coupling, you can specify the mode by changing this
property value.

If Coupling is set to 'DC', the signal input is connected directly to the amplifier,
allowing measurement of the complete signal including its DC bias component. This is
typically used with slowly changing signals such as temperature, pressure, or voltage
readings.

If Coupling is set to 'AC', a series capacitor is inserted between the input connector
and the amplifier, filtering out the DC bias component of the measured signal. This is
typically used with dynamic signals such as audio.

Values
'DC' Direct input connection to amplifier. Default for any device that supports DC

coupling.
'AC' Series capacitor inserted between the input connector and the amplifier.

Default for any device that supports only AC coupling.

Examples
Create a session and add an analog input channel. Then change the coupling mode to
'AC'.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'Dev4','ai1','Voltage')

2 Device-Specific Properties — Alphabetical List

2-2

ch.Coupling = 'AC'

See Also
Functions
addAnalogInputChannel

Properties
Range | TerminalConfig

 Coupling

2-3

Block Reference

3

Analog Input
Acquire data from multiple analog channels of data acquisition device

Library
Data Acquisition Toolbox

Note Some devices are not supported by the Simulink® blocks in Data Acquisition
Toolbox. To see if your device supports Simulink, refer to Supported Hardware.

Description
The Analog Input block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur once
at the start of the model execution. During the model run time, the block acquires data
either synchronously (deliver the current block of data the device is providing) or
asynchronously (stream buffered incoming data).

The block has no input ports. It has one or more output ports, depending on the
configuration you choose in its dialog box.

Use the Analog Input block to incorporate live measured data into Simulink for:

• System characterization
• Algorithm verification
• System and algorithm modeling
• Model and design validation
• Controller design

3 Block Reference

3-2

https://www.mathworks.com/hardware-support/data-acquistion-software.html

The following diagram shows the basic analog input usage configuration, with which you
can:

• Acquire data at each time step or once per model execution.
• Analyze the data, or use it as input to a system in the model.
• Optionally display results.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use the Analog Input block only with devices that support clocked acquisition. To
acquire data using devices that do not support clocking, use the Analog Input (Single
Sample) block.

Other Supported Features
• If you have DSP System Toolbox™, you can use this block for signal applications.
• This block supports the use of Simulink Accelerator™ mode, but not Rapid Accelerator

or code generation.
• The block supports the use of model referencing, so that your model can include other

Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

 Analog Input

3-3

Dialog Box
Use the Block Parameters dialog box to select your acquisition mode and to set other
configuration options.

3 Block Reference

3-4

 Analog Input

3-5

Device
The device from which you want to acquire data. The items in the list vary, depending
on which devices you have connected to your system. Devices in the list are specified
by adaptor or vendor name and unique device ID, followed by the model name of the
device, for example, ni Dev1 (USB-6255). The first available device is selected by
default. CompactDAQ chassis would be shown as a single device; vendor name,
chassis ID, and chassis model would be shown in the list, for example, ni cDAQ2
(cDAQ-9172).

Acquisition Mode
Asynchronous — In asynchronous mode, the data acquisition from the device and
the simulation happen in parallel. The model initiates the acquisition from the device
when the simulation starts. Data from the device is continuously acquired into a FIFO
(first in, first out) buffer in parallel as the simulation runs. At each time step, the
model fetches data from the FIFO buffer and outputs a block of data. The data in the
FIFO buffer is contiguous according to the hardware acquisition clock.

Synchronous — In synchronous mode, the simulation is blocked while acquiring data
from the device. The model initiates the acquisition from the device at each time step
and immediately enters a wait state until the acquisition request has completed. This
is unbuffered input; the block outputs the latest block of data at each time step.

The following diagrams show the difference between synchronous and asynchronous
modes for the Analog Input block.

Synchronous Analog Input

3 Block Reference

3-6

At the first time step (T1), the acquisition is initiated for the required block of data
(B1). The simulation does not continue until B1 is completely acquired.

Asynchronous Analog Input – Scenario 1

Scenario 1 shows the case when simulation speed outpaces data acquisition speed. At
the first time step (T1), the required block of data (B1) is still being acquired.
Therefore, the simulation does not continue until B1 is completely acquired.

Asynchronous Analog Input – Scenario 2

 Analog Input

3-7

Scenario 2 shows the case when data acquisition speed outpaces simulation speed. At
the first time step (T1), the required block of data (B1) has been completely acquired.
Therefore, the simulation runs continuously.

Note Several factors, including device hardware and model complexity, can affect the
simulation speed, causing both scenarios 1 and 2 to occur within the same simulation.

Channels
The channel configuration table lists the hardware channels of your device, and lets
you configure them. Specify which channels to acquire data from (by default all the
channels are selected). These parameters are specified for each selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column
is read-only, and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the
hardware, but you can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If
compactDAQ chassis is selected, it shows the ID of the compactDAQ module which
the channel belongs to; otherwise the ID of the device.

Measurement Type — Measurement type of the channel. This block supports only
voltage measurement types. (For other measurement types, use a data acquisition
session in MATLAB.)

Input Range — Input ranges available for each channel supported by the hardware,
defined when a device is selected.

Terminal Configuration — Specifies the hardware terminal configuration, such as
single-ended, differential, etc. The terminal configuration options are defined by the
capabilities of the selected channel.

Coupling — Hardware coupling configuration, such as AC or DC. The coupling type is
defined when a device is selected

Number of ports
1 for all channels (default) — Output data from a single port as a matrix, with a size
of blocksize by number of channels selected.

3 Block Reference

3-8

1 per channel — Output data from N ports, where N is equal to the number of
selected channels. Each output port is a column vector with a size of blocksize-by-1.
For naming, each output port uses the channel name if one was specified, otherwise
the channel ID, for example, ai0.

Input sample rate
The rate at which samples are acquired from the device, in samples per second. This
is the sampling rate for the hardware. The sample rate must be a positive real number
within the range supported by the selected hardware.

Block size
The number of data samples to output at each time step for each channel. It must be a
positive integer greater than or equal to 2, within the range supported by the selected
hardware.

Output relative timestamps
Select this option to output the relative data timestamps, one for each sample. This
option adds a new output port to the block. The data type of this port is double, and
corresponds to the time offset in seconds of the sample related to the start of
acquisition. For asynchronous acquisition, the acquisition is initiated once at the start
of model execution, the relative timestamp is a monotonically-increasing number
relative to the start of simulation. For synchronous acquisition, an acquisition is
initiated at every time step; as a result, the relative timestamp is reset to zero every
time an acquisition is initiated.

See Also
Blocks
Analog Input (Single Sample) | Analog Output | Analog Output (Single Sample) | Digital
Input (Single Sample) | Digital Output (Single Sample)

Introduced in R2016b

 Analog Input

3-9

Analog Output
Output data to multiple analog channels of data acquisition device

Library
Data Acquisition Toolbox

Note Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox.
To see if your device supports Simulink, refer to Supported Hardware.

Description
The Analog Output block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur once
at the start of the model execution. During the model run time, the block outputs data to
the hardware synchronously (outputs the block of data as it is provided). On every time
step, the block performs a blocking synchronous write to the hardware, outputting the
entire input data.

The block has one or more input ports, depending on the option you choose in its dialog
box. It has no output ports.

The Analog Output block inherits the sample time from the driving block connected to the
input port. The valid data types of the signal at the input port are double or native data
types supported by the hardware.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

3 Block Reference

3-10

https://www.mathworks.com/hardware-support/data-acquistion-software.html

You can use the Analog Output block only with devices that support clocked generation.
To generate data using devices that do not support clocking, use the Analog Output
(Single Sample) block.

Other Supported Features
• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator

or code generation.
• The block supports the use of model referencing, so that your model can include other

Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

Dialog Box
Use the Block Parameters dialog box to set the block configuration options.

 Analog Output

3-11

The following diagram shows the timing of the synchronous analog output.

3 Block Reference

3-12

At the first time step (T1), data output is initiated and the corresponding block of data
(B1) is output to the hardware. The simulation does not continue until B1 is output
completely.

Device
The device from which you want to generate data. The items in the list vary,
depending on which devices you have connected to your system. Devices in the list
are specified by adaptor/vendor name and unique device ID, followed by the model
name of the device, for example, ni Dev1 (USB-6255). The first available device is
selected by default. CompactDAQ chassis would be shown as a single device; vendor
name, chassis ID, and chassis model would be shown in the list, for example, ni
cDAQ2 (cDAQ-9172).

Channels
The channel configuration table lists your device hardware channels and lets you
configure them. Specify these parameters for each selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column
is read-only, and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the
hardware, but you can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a
CompactDAQ chassis is selected, it shows the ID of the CompactDAQ module which
the channel belongs to; otherwise it shows the ID of the device.

 Analog Output

3-13

Measurement Type — Measurement type of the channel. This block supports only
voltage measurement types. (For other measurement types, use a data acquisition
session in MATLAB.)

Output Range — Output ranges available for each channel supported by the
hardware, defined when a device is selected.

Number of ports
1 for all channels (default) — One input port on the block for all channels. Provide
data as a matrix, with a size of blocksize by number of channels.

1 per channel — N input ports on the block, where N is equal to the number of
selected channels. Provide each port’s data as a column vector with a size of
blocksize-by-1. For naming, each output port uses the channel name if one was
specified, otherwise the channel ID, for example, ai0.

Output sample rate
The rate at which samples are output from Simulink to the device, in samples per
second. This is the sampling rate for the hardware. The default is defined when a
device is selected. The sample rate must be a positive real number within the range
allowed for the selected hardware.

See Also
Blocks
Analog Input | Analog Input (Single Sample) | Analog Output (Single Sample) | Digital
Input (Single Sample) | Digital Output (Single Sample)

Introduced in R2016b

3 Block Reference

3-14

Analog Input (Single Sample)
Acquire single sample from multiple analog channels of data acquisition device

Library
Data Acquisition Toolbox

Note Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox.
To see if your device supports Simulink, refer to Supported Hardware.

Description
The Analog Input (Single Sample) block opens, initializes, configures, and controls an
analog data acquisition device. The opening, initialization, and configuration of the device
occur once at the start of the model execution. The block acquires a single sample every
time step, synchronously from the device, during the model run time.

The block has no input ports. It has one or more output ports, depending on the
configuration you choose in its dialog box.

Use the Analog Input (Single Sample) block to incorporate live measured data into
Simulink for:

• System characterization
• Algorithm verification
• System and algorithm modeling
• Model and design validation

 Analog Input (Single Sample)

3-15

https://www.mathworks.com/hardware-support/data-acquistion-software.html

• Controller design

Analog input acquisition is done synchronously, according to the following diagram.

At the first time step (T1), data is acquired from the selected hardware channels. The
simulation does not continue until data is read from all channels.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use Analog Input (Single Sample) block only with devices that support single
sample acquisition. If the device does not support single sample acquisition, the model
generates an error. To acquire data from devices that do not support acquisition of a
single sample (such as devices designed for sound and vibration), use the Analog Input
block.

Other Supported Features
• If you have DSP System Toolbox, you can use this block for signal applications.
• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator

or code generation.
• The block supports the use of model referencing, so that your model can include other

Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

3 Block Reference

3-16

Dialog Box
Use the Block Parameters dialog box to select your device and to set other configuration
options.

Device
The device from which you want to acquire data. The items in the list vary, depending
on which devices you have connected to your system. Devices in the list are specified
by adaptor/vendor name and unique device ID, followed by the name of the device.
The first available device is selected by default.

Channels
The channel configuration table lists your device hardware channels and lets you
configure them. Specify these parameters for each selected channel:

 Analog Input (Single Sample)

3-17

Channel ID — Hardware channel ID specified by the device. The Channel ID column
is read-only and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the
hardware, but you can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a
compactDAQ chassis is selected, it shows the ID of the compactDAQ module which
the channel belongs to; otherwise it shows the ID of the device.

Measurement Type — Measurement type of the channel. This block supports only
voltage measurement types. (For other measurement types, use a data acquisition
session in MATLAB.)

Input Range — Input ranges available for each channel supported by the hardware,
defined when a device is selected.

Terminal Configuration — Hardware terminal configuration, such as single-ended,
differential, etc. The terminal configuration options are defined by the capabilities of
the selected channel.

Coupling — Hardware coupling configuration, such as AC or DC. The coupling type is
defined when a device is selected

Number of ports
1 for all channels (default) — Outputs data from a single port as a vector with an
element for each selected channel.

1 per channel — Outputs data from N ports, where N is equal to the number of
selected channels. The output for each port is a scalar value. For naming, each output
port uses the channel name if one was specified, otherwise the channel ID, for
example, ai0.

Sample time
Specifies the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 1 (seconds). For more
information, see “What Is Sample Time?” (Simulink).

Output Timestamp
Select this option to output the absolute timestamp. This option adds a new output
port to the block. The data type of this port is double (datenum), which corresponds to

3 Block Reference

3-18

a serial date number. You can convert the data into a datetime array with the
datetime function.

See Also
Blocks
Analog Input | Analog Output | Analog Output (Single Sample) | Digital Input (Single
Sample) | Digital Output (Single Sample)

Introduced in R2016b

 Analog Input (Single Sample)

3-19

Analog Output (Single Sample)
Output single sample to multiple analog channels of data acquisition device

Library
Data Acquisition Toolbox

Note Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox.
To see if your device supports Simulink, refer to Supported Hardware.

Description
The Analog Output (Single Sample) block opens, initializes, configures, and controls an
analog data acquisition device. The opening, initialization, and configuration of the device
occur once at the start of the model execution. The block outputs a single sample every
time step, synchronously to the hardware, during the model run time.

The block has one or more input ports, depending on the option you choose in its dialog
box. It has no output ports. The valid data type of the signal at the input port is double.

The Analog Output (Single Sample) block inherits the sample time from the driving block
connected to the input port. Analog output is done synchronously, according to the
following diagram.

3 Block Reference

3-20

https://www.mathworks.com/hardware-support/data-acquistion-software.html

At the first time step (T1), data is output to the selected hardware channels. The
simulation does not continue until data is output to all channels.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use the Analog Output (Single Sample) block only with devices that support
single sample output. To send data using devices that do not support acquisition of a
single sample (such as devices designed for sound and vibration), use the Analog Output
block.

Other Supported Features
• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator

or code generation.
• The block supports the use of model referencing, so that your model can include other

Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

Dialog Box
Use the Block Parameters dialog box to select your device and to set other configuration
options.

 Analog Output (Single Sample)

3-21

Device
The data acquisition device from which you want to acquire data. The items in the list
vary, depending on which devices you have connected to your system. Devices in the
list are specified by adaptor/vendor name and unique device ID, followed by the model
name of the device, for example, ni Dev1 (USB-6255). The first available device is
selected by default. CompactDAQ chassis would be shown as a single device; vendor
name, chassis ID, and chassis model would be shown in the list, for example, ni
cDAQ2 (cDAQ-9172).

Channels
The channel configuration table lists your device's hardware channels and lets you
configure them. These parameters are specified for each selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column
is read-only, and the parameters are defined when the device is selected.

3 Block Reference

3-22

Name — Channel name. By default the table displays any names provided by the
hardware, but you can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Module — Displays the Device ID the channel belongs to. The Module column is read-
only. If a CompactDAQ chassis is selected, it will show the ID of the CompactDAQ
module which the channel belongs to; otherwise it will show the ID of the device.

Measurement Type — Specifies the measurement type of the channel. This block
supports only voltage measurement types. (For other measurement types, use a data
acquisition session in MATLAB.)

Output Range — Specifies the output ranges available for each channel supported
by the hardware, and is defined when a device is selected.

Number of ports
1 for all channels (default) — One input port on the block for all channels. Provide
data as a column vector with size number of channels by 1

1 per channel — N input ports on the block, where N is equal to the number of
selected channels. Provide each port’s data size as 1-by-1. For naming, each output
port uses the channel name if one was specified, otherwise the channel ID, for
example, ai0.

Sample time
Specifies the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 1. For more information,
see “What Is Sample Time?” (Simulink).

See Also
Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Digital Input (Single
Sample) | Digital Output (Single Sample)

Introduced in R2016b

 Analog Output (Single Sample)

3-23

Digital Input (Single Sample)
Acquire single sample from multiple digital lines of data acquisition device

Library
Data Acquisition Toolbox

Note Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox.
To see if your device supports Simulink, refer to Supported Hardware.

Description
The Digital Input (Single Sample) block synchronously outputs the latest scan of data
available from the digital lines selected at each simulation time step. It acquires
unbuffered digital data, and delivers this as a vector of boolean values.

The block has no input ports. It has one or more output ports, depending on the option
you choose in its dialog box.

The block inherits the sample time of the model. Digital input acquisition is done
synchronously, according to the following diagram.

3 Block Reference

3-24

https://www.mathworks.com/hardware-support/data-acquistion-software.html

At the first time step (T1), data is acquired from the selected hardware lines. The
simulation does not continue until data is read from all lines.

Note To use this block, you need both Data Acquisition Toolbox and Simulink software.

Other Supported Features
• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator

or code generation.
• The block supports the use of model referencing, so that your model can include other

Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

Dialog Box
Use the Block Parameters dialog box to select a device and set configuration options.

 Digital Input (Single Sample)

3-25

Device
The data acquisition device from which you want to acquire data. The items in the list
vary, depending on which devices you have connected to your system. Devices in the
list are specified by adaptor/vendor name and unique device ID, followed by the name
of the device. The first available device is selected by default.

3 Block Reference

3-26

Lines
The line configuration table lists your device’s lines and lets you configure them. The
table lists all the lines that can be configured for input. Use the check boxes and
selection buttons to specify which lines to acquire data from.

Line ID — ID of the hardware line (for example, port0/line0). This is automatically
detected and filled in by the selected device, and is read-only.

Name — Hardware line name. This is automatically detected and filled in from the
hardware, though you can edit the name.

Module — Device ID that the channel belongs to. The Module column is read-only. If
a CompactDAQ chassis is selected, it shows the ID of the CompactDAQ module which
the channel belongs to; otherwise it shows the ID of the device.

Number of ports
1 for all lines (default) — The block has only one output port for all of the lines that
are selected in the table. Acquired data is a vector of boolean values, whose size is
the number of lines.

1 per line — The block has one output port per selected line. The name of each
output port is the name specified in the table for each line. If no name is provided, the
name is the Line ID. For example, if line 2 of hardware port 3 is selected, and you did
not specify a name in the line table, port3/line2 appears in the block. Data size for
each line is 1-by-1.

Sample time
Specifies the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 1. For more information,
see “What Is Sample Time?” (Simulink).

Output Timestamp
Select this option to output the absolute timestamp. This option adds a new output
port to the block. The data type of this port is double (datenum), which corresponds to
a serial date number. You can convert the data into a datetime array with the
datetime function.

 Digital Input (Single Sample)

3-27

See Also
Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Analog Output (Single
Sample) | Digital Output (Single Sample)

Introduced in R2016b

3 Block Reference

3-28

Digital Output (Single Sample)
Output single sample to multiple digital lines of data acquisition device

Library
Data Acquisition Toolbox

Note Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox.
To see if your device supports Simulink, refer to Supported Hardware.

Description
The Digital Output (Single Sample) block synchronously outputs the latest set of data to
the hardware at each simulation time step. It outputs unbuffered digital data. Specify the
output data as a vector of boolean values.

The block has no output ports. It can have one or more input ports, depending on the
option you choose in its dialog box. The data type of the signal at the input port must be a
logical data type.

The Digital Output (Single Sample) block inherits the sample time from the driving block
connected to the input port. Digital output is done synchronously, according to the
following diagram.

 Digital Output (Single Sample)

3-29

https://www.mathworks.com/hardware-support/data-acquistion-software.html

At the first time step (T1), data is output to the selected hardware lines. The simulation
does not continue until data is output to all lines.

Note To use this block, you need both Data Acquisition Toolbox and Simulink software.

Other Supported Features
• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator

or code generation.
• The block supports the use of model referencing, so that your model can include other

Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

Dialog Box
Use the Block Parameters dialog box to set configuration options.

3 Block Reference

3-30

Device
The device to which you want to output data. The items in the list vary, depending on
which devices you have connected to your system. Devices in the list are specified by
adaptor/vendor name and unique device ID, followed by the name of the device. The
first available device is selected by default.

Lines
The line configuration table lists your device lines and lets you configure them. The
table lists all the lines that can be configured for input.

Line ID — ID of the hardware line (for example, port0/line0). This is automatically
detected and filled in by the selected device, and is read-only.

Name — Hardware line name. This is automatically detected and filled in from the
hardware, but you can edit the name.

 Digital Output (Single Sample)

3-31

Module — Device ID that the channel belongs to. The Module column is read-only. If
a CompactDAQ chassis is selected, it shows the ID of the CompactDAQ module which
the channel belongs to; otherwise it shows the ID of the device.

Number of ports
1 for all lines (default) — The block has only one input port for all of the lines that
are selected in the table. Data must be a vector of boolean values, whose size is the
number of lines.

1 per line — The block has one input port per selected line. The name of each input
port is the name specified in the table for each line. If no name is provided, the name
is the Line ID. For example, if line 2 of hardware port 3 is selected, and you did not
specify a name in the line table, port3/line2 appears in the block. Data for each
line must be a 1-by-1 boolean.

Sample time
Specifies the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 1. For more information,
see “What Is Sample Time?” (Simulink).

See Also
Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Analog Output (Single
Sample) | Digital Input (Single Sample)

Introduced in R2016b

3 Block Reference

3-32

Functions — Alphabetical List

4

addAnalogInputChannel
Add analog input channel

Syntax
addAnalogInputChannel(s,deviceID,channelID,measurementType)
ch = addAnalogInputChannel(s,deviceID,channelID,measurementType)
[ch,idx] = addAnalogInputChannel(s,deviceID,channelID,
measurementType)

Description
addAnalogInputChannel(s,deviceID,channelID,measurementType) adds a
channel on the device represented by deviceID, with the specified channelID, and
channel measurement type represented by measurementType, to the session s.
Measurement types are vendor-specific.

• Use daq.createSession to create a session object before you use this method.
• To use counter channels, see addCounterInputChannel.

ch = addAnalogInputChannel(s,deviceID,channelID,measurementType)
creates and returns the channel object ch.

[ch,idx] = addAnalogInputChannel(s,deviceID,channelID,
measurementType) creates and returns the object ch, representing the channel that
was added, and the index idx, which is an index into the array of the session object
Channels property.

Examples

4 Functions — Alphabetical List

4-2

Add an Analog Input Current Channel
s = daq.createSession('ni')
addAnalogInputChannel(s,'cDAQ1Mod3','ai0','Current');

Add an Analog Input Channel and Return Its Index
s = daq.createSession('ni')
[ch,idx] = addAnalogInputChannel(s,'cDAQ2Mod6','ai0','Thermocouple')

Add a Range of Analog Input Channels
s = daq.createSession('ni')
ch = addAnalogInputChannel(s,'cDAQ1Mod1',[0 2 4],'Voltage');

Input Arguments
s — Data acquisition session
session object handle

Data acquisition session specified as a session object handle, created using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

For a list of relevant session object properties, see the following “Tips” on page 4-5.

deviceID — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor.
Obtain the device ID by calling daq.getDevices.
Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; or the physical
location of the channel on the device. Supported values are specific to the vendor and

 addAnalogInputChannel

4-3

device. You can add multiple channels by specifying the channel ID as a numeric vector,
or an array of character vectors or strings. The index for this channel in the session
display indicates the position of this channel in the session. This channel ID is not the
same as channel index in the session: if you add a channel with ID 2 as the first channel in
a session, the session channel index is 1.

measurementType — Channel measurement type
character vector or string

Channel measurement type specified as a character vector or string. measurementType
represents a vendor-defined measurement type. Valid measurement types include:

• 'Voltage'
• 'Thermocouple'
• 'Current'
• 'Accelerometer'
• 'RTD'
• 'Bridge'
• 'Microphone'
• 'IEPE'

Not all devices support all types of measurement.
Data Types: char | string

Output Arguments
ch — Analog input channel object
1-by-n array

Analog input channel that you add, returned as an object containing a 1-by-n array of
vendor-specific channel information. Use this channel object to access device and channel
properties.

idx — Channel index
numeric

Channel index returned as a numeric value. With this index, you can access the array of
the session object Channels property.

4 Functions — Alphabetical List

4-4

Tips
The relevant properties of the data acquisition session are:

ADCTimingMode Set channel timing mode
BridgeMode Specify analog input device bridge mode
Device Channel device information
ExcitationCurrent Current of external source of excitation
ExcitationSource External source of excitation
ExcitationVoltage Voltage of excitation source
ExternalTriggerTimeout Specify maximum wait time for external trigger
ID ID of channel in session
MaxSoundPressureLevel Sound pressure level for microphone channels
MeasurementType Channel measurement type
Name Specify descriptive name for the channel
NominalBridgeResistance Resistance of sensor
R0 Specify resistance value
Range Specify channel measurement range
RTDConfiguration Specify wiring configuration of RTD device
RTDType Specify sensor sensitivity
ScansAcquired Number of scans acquired during operation
Sensitivity Sensitivity of an analog channel
ShuntLocation Indicate location of channel’s shunt resistor
ShuntResistance Resistance value of channel’s shunt resistor
TerminalConfig Specify terminal configuration
ThermocoupleType Select thermocouple type
Units Specify unit of RTD measurement
Coupling Specify input coupling mode

 addAnalogInputChannel

4-5

See Also
Functions
addAnalogOutputChannel | daq.createSession | inputSingleScan |
removeChannel | startBackground | startForeground

Introduced in R2010b

4 Functions — Alphabetical List

4-6

addAnalogOutputChannel
Add analog output channel to session

Syntax
addAnalogOutputChannel(s,deviceName,channelID,measurementType)
ch = addAnalogOutputChannel(s,deviceName,channelID,measurementType)
[ch,idx] = addAnalogOutputChannel(s,deviceName,channelID,
measurementType)

Description
addAnalogOutputChannel(s,deviceName,channelID,measurementType) adds an
analog output channel on the device represented by deviceID, with the specified
channelID, and channel measurement type defined by measurementType, on the
session object s. Measurement types are vendor-specific.

• Use daq.createSession to create a session object before you use this method.
• To use counter channels, see addCounterInputChannel.

ch = addAnalogOutputChannel(s,deviceName,channelID,measurementType)
creates and returns the channel object ch, representing the channel that was added.

[ch,idx] = addAnalogOutputChannel(s,deviceName,channelID,
measurementType) creates and returns the object ch, representing the channel that
was added, and the object idx, representing the index into the array of the session object
Channels property.

Examples

 addAnalogOutputChannel

4-7

Add an Analog Output Voltage Channel

s = daq.createSession('ni')
addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage');

Add Analog Output Channel and Return Its Index

s = daq.createSession('ni')
[ch,idx] = addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage');

Add a Range of Analog Output Channels

s = daq.createSession('ni')
ch = addAnalogOutputChannel(s,'cDAQ1Mod8',0:3,'Current');

Input Arguments
s — Data acquisition session
session object handle

Data acquisition session specified as a session object handle, created using
daq.createSession. Create one session per vendor, and use that vendor session to
perform all data acquisition and generation operations.

For a list of relevant session object properties, see “Tips” on page 4-9.

deviceName — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor.
Obtain the device ID by calling daq.getDevices.
Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; or the physical
location of the channel on the device. Supported values are specific to the vendor and

4 Functions — Alphabetical List

4-8

device. You can add multiple channels by specifying the channel ID as a numeric vector,
or an array of character vectors or strings. The index for this channel indicates its
position in the session display. The channel ID is not the same as the channel index in the
session: if you add a channel with ID 2 as the first channel in a session, the session
channel index is 1.

measurementType — Channel measurement type
character vector or string

Channel measurement type specified as a character vector or string. measurementType
represents a vendor-defined measurement type. Supported measurement types include:

• 'Voltage'
• 'Current'

Data Types: char | string

Output Arguments
ch — Analog output channel object
1-by-n array

Analog output channel, returned as an object containing a 1-by-n array of vendor-specific
channel information. Use this channel object to access device and channel properties.

idx — Channel index
numeric

Channel index, returned as a numeric value. With this index, you can access the array of
the session object Channels property.

Tips
The relevant properties of the data acquisition session are:

 addAnalogOutputChannel

4-9

Device Channel device information
ExcitationCurrent Current of external source of excitation
ExcitationSource External source of excitation
ExternalTriggerTimeout Specify maximum wait time for external trigger
ID ID of channel in session
MaxSoundPressureLevel Sound pressure level for microphone channels
MeasurementType Channel measurement type
Name Specify descriptive name for the channel
Range Specify channel measurement range
ScansOutputByHardware Indicate number of scans output by hardware
ScansQueued Indicate number of scans queued for output
Sensitivity Sensitivity of an analog channel
TerminalConfig Specify terminal configuration

See Also
Functions
addAnalogInputChannel | daq.createSession | outputSingleScan |
removeChannel | startBackground | startForeground

Introduced in R2010b

4 Functions — Alphabetical List

4-10

addAudioInputChannel
Add audio input channel to session

Syntax
ch = addAudioInputChannel(s,deviceName,channelID)
[ch,idx] = addAudioInputChannel(s,deviceName,channelID)

Description
ch = addAudioInputChannel(s,deviceName,channelID) creates and displays the
object ch representing a channel added to the session s using the device represented by
deviceName, with the specified channelID. The channel object is stored in the variable
ch.

Tips

• Use daq.createSession to create a session object before you use this method.
• To use analog channels, see addAnalogInputChannel.

[ch,idx] = addAudioInputChannel(s,deviceName,channelID) additionally
assigns to idx the index into the array of the session object's Channels property.

Examples

Add an Audio Input Channel

s = daq.createSession('directsound');
addAudioInputChannel(s,'Audio1',1);

 addAudioInputChannel

4-11

Add Multiple Audio Input Channels

Add two audio input channels and specify output arguments to represent the channel
object and the index.

s = daq.createSession('directsound');
[ch,idx] = addAudioInputChannel(s,'Audio1',1:2);

Input Arguments
s — Data acquisition session
session object

Data acquisition session specified as a session object created using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

deviceName — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor.
Obtain the device ID by calling daq.getDevices. The channel specified for this device is
created for the session object.
Data Types: char | string

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. Supported values are specific to the vendor and device. You
can also add a range of channels. The index for this channel displayed in the session
indicates this channels position in the session. If you add a channel with channel ID 1 as
the first channel in a session, the session index is 1.

Output Arguments
ch — Audio input channel
channel object

4 Functions — Alphabetical List

4-12

Audio input channel that you add, returned as a channel object containing vendor specific
channel information. Use this channel object to access device and channel properties. The
channel object has the following properties.

BitsPerSample Display bits per sample
Device Channel device information
ID ID of channel in session
MeasurementType Channel measurement type
Name Specify descriptive name for the channel
Range Specify channel measurement range
StandardSampleRates Display standard rates of sampling
UseStandardSampleRates Configure session to use standard sample rates

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

See Also
Functions
addAudioOutputChannel | daq.createSession | removeChannel |
startBackground | startForeground

Topics
“Hardware Discovery and Session Setup”

Introduced in R2014a

 addAudioInputChannel

4-13

addAudioOutputChannel
Add audio output channel to session

Syntax
ch = addAudioOutputChannel(s,deviceName,channelID)
[ch,idx] = addAudioOutputChannel(s,deviceName,channelID)

Description
ch = addAudioOutputChannel(s,deviceName,channelID) creates and displays
the object ch representing a channel added to the session s using the device represented
by deviceName, with the specified channelID. The channel is stored in the variable ch.

Tips

• Use daq.createSession to create a session object before you use this method.
• To use analog channels, see addAnalogInputChannel.

[ch,idx] = addAudioOutputChannel(s,deviceName,channelID) additionally
assigns idx with the index into the array of the session object's Channels property.

Examples

Add an Audio Output Channel

Create a session and add an audio output channel to it.

s = daq.createSession ('directsound');
ch = addAudioOutputChannel(s,'Audio1',1);

4 Functions — Alphabetical List

4-14

Add Multiple Audio Output Channels

Add several audio output channels to a session, and assign the index array.

Add two audio output channels to a session and assign output arguments to represent the
channel objects and their indices.

s = daq.createSession ('directsound');
[ch,idx] = addAudioOutputChannel(s,'Audio3',1:2);

Input Arguments
s — Data acquisition session
session object

Data acquisition session specified as a session object created using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

deviceName — Device ID
character vector or string

Device ID as defined by the device vendor, specified as a character vector or string.
Obtain the device ID by calling daq.getDevices. The channel specified for this device is
created for the session object.
Data Types: char | string

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as a numeric value. Supported values are specific to the vendor and device. You
can also add a range of channels. The index for this channel displayed in the session
indicates this channel's position in the session. If you add a channel with channel ID 1 as
the first channel in a session, the session index is 1.

 addAudioOutputChannel

4-15

Output Arguments
ch — Audio output channel
channel object

Audio output channel that you add, returned as a channel object containing vendor
specific channel information. Use this channel object to access device and channel
properties. The channel object has the following properties.

BitsPerSample Display bits per sample
Device Channel device information
ID ID of channel in session
MeasurementType Channel measurement type
Name Specify descriptive name for the channel
Range Specify channel measurement range
StandardSampleRates Display standard rates of sampling
UseStandardSampleRates Configure session to use standard sample rates

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

See Also
Functions
addAudioInputChannel | daq.createSession | removeChannel |
startBackground | startForeground

Topics
“Hardware Discovery and Session Setup”

Introduced in R2014a

4 Functions — Alphabetical List

4-16

addClockConnection
Add clock connection

Syntax
addClockConnection(s,source,destination,type)
cc = addClockConnection(s,source,destination,type)
[cc,idx] = addClockConnection(s,source,destination,type)

Description
addClockConnection(s,source,destination,type) adds a clock connection from
the specified source device and terminal to the specified destination device and terminal,
of the specified connection type.

Tip Before adding clock connections, create a session using daq.createSession, and
add channels to the session.

cc = addClockConnection(s,source,destination,type) adds a clock connection
from the specified source device and terminal to the specified destination device and
terminal, of the specified connection type and displays it in the variable cc.

[cc,idx] = addClockConnection(s,source,destination,type) adds a clock
connection from the specified source device and terminal to the specified destination
device and terminal, of the specified connection type and displays the connection in the
variable cc and the connection index, idx.

Examples

Add External Scan Clock

Create a session and add an analog input channel from Dev1 to the session.

 addClockConnection

4-17

s = daq.createSession('ni')
addAnalogInputChannel(s,'Dev1','ai0','Voltage');

Add a clock connection from an external device to terminal PFI1 on Dev1 using the
'ScanClock' connection type and save the connection settings to a variable.

cc = addClockConnection(s,'external','Dev1/PFI1','ScanClock');

Export Scan Clock to External Device

To add a clock connection going to an external destination, create a session and add an
analog input channel from Dev1 to the session.

s = daq.createSession('ni')
addAnalogInputChannel(s,'Dev1','ai0','Voltage');

Add a clock from terminal PFI0 on Dev1 to an external device using the 'ScanClock'
connection type.

addClockConnection(s,'Dev1/PFI1','external','ScanClock');

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

source — Source of clock connection
character vector or string

Source for the clock connection, specified as a character vector or string. Valid values
are:

• 'external' — When your clock is based on an external event.

4 Functions — Alphabetical List

4-18

• 'deviceID/terminal' — When your clock source is on a specific terminal on a
device in your session, for example, 'Dev1/PFI1'. For more information on device ID
see Device. For more information on terminal see Terminals.

• 'chassisId/terminal' — When your clock source is on a specific terminal on a
chassis in your session, for example, 'cDAQ1/PFI1'. For more information on
terminal see Terminals.

You can have only one clock source in a session.
Data Types: char | string

destination — Destination of clock connection
character vector or string

Destination for the clock connection, specified as a character vector or string. Valid
values are:

• 'external' — When your clock source is connected to an external device.
• 'deviceID/terminal' — When your clock source is connected to another device in

your session, for example, 'Dev1/PFI1'. For more information on device ID see
Device. For more information on terminal see Terminals.

• 'chassisId/terminal' — When your clock source is connected to a chassis in your
session, for example, 'cDAQ1/PFI1'. For more information on terminal see
Terminals.

You can also specify multiple destination devices as an array, for example, {'Dev1/
PFI1','Dev2/PFI1'}.
Data Types: char | string | cell

type — Clock connection type
character vector or string

The clock connection type, specified as a character vector or string. 'ScanClock' is the
only connection type available for clock connections at this time.
Data Types: char | string

 addClockConnection

4-19

Output Arguments
cc — Clock connection
1-by-n object array

The added clock connection, returned as a ScanClockConnection object containing clock
connection information.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object Channels property.

See Also
addTriggerConnection | daq.createSession | removeConnection

Topics
“Clock Connections”
“Synchronization”
“Import Scan Clock from External Source”
“Acquire Digital Data Using an External Clock”
“Export Scan Clock to External System”
“Acquire Digital Data Using a Shared Clock”
“Acquire Digital Data Using a Counter Output Channel as External Clock”
“Multiple-Device Synchronization Using USB or PXI Devices”
“Multiple-Chassis Synchronization with CompactDAQ Devices”

Introduced in R2012a

4 Functions — Alphabetical List

4-20

addCounterInputChannel
Add counter input channel

Syntax
addCounterInputChannel(s,deviceID,channelID)
ch = addCounterInputChannel(s,deviceID,channelID,measurementType)
[ch,idx] = addCounterInputChannel(s,deviceID,channelID,
measurementType)

Description
addCounterInputChannel(s,deviceID,channelID) adds a counter channel on the
device represented by deviceID with the specified channelID, and channel
measurement type, represented by measurementType, to the session s. Measurement
types are vendor specific.

ch = addCounterInputChannel(s,deviceID,channelID,measurementType)
returns the object ch.

[ch,idx] = addCounterInputChannel(s,deviceID,channelID,
measurementType) returns the object ch, representing the channel that was added and
the index, idx, which is an index into the array of the session object's Channels property.

Examples

Add a Counter Input Edgecount Channel

s = daq.createSession('ni')
ch = addCounterInputChannel(s,'cDAQ1Mod5','ctr0','EdgeCount');
ch.Terminal % View device signal name for pin mapping.

 addCounterInputChannel

4-21

Add a Counter Input Frequency Channel

Specify output arguments to represent the channel object and the index.

s = daq.createSession('ni')
[ch,idx] = addCounterInputChannel(s,'cDAQ1Mod5',1,'Frequency');
ch.Terminal % View device signal name for pin mapping.

Add Multiple Counter Input Channels

s = daq.createSession ('ni')
ch = addCounterInputChannel(s,'cDAQ1Mod5',[0 1 2],'EdgeCount');

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

deviceID — Device ID
character vector or string

Device ID as defined by the device vendor, specified as a character vector or string.
Obtain the device ID by calling daq.getDevices. The channel specified for this device is
created for the session object.
Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string, corresponding to the
specific counter channel on the device added to the session. Channel ID 0 corresponds to
the device counter 'ctr0', Channel ID 1 to 'ctr1', and so on. For the related device
signal names and physical pins, see the pinout for your particular device.

4 Functions — Alphabetical List

4-22

You can add a range of channels by specifying the channel ID with a numeric array, or an
array of character vectors or strings.

The index for a channel displayed in the session indicates the channel’s position in the
session. The first channel you add in a session has session index 1, and so on.
Data Types: char | string | cell

measurementType — Channel measurement type
character vector or string

Channel measurement type, specified as a character vector or string. measurementType
represents a vendor-defined measurement type, and can include:

• 'EdgeCount'
• 'PulseWidth'
• 'Frequency'
• 'Position'

Data Types: char | string

Output Arguments
ch — Counter input channel object
1-by-n array

Counter input channel that you add, returned as an object containing a 1-by-n array of
vendor specific channel specific information. Use this channel object to access device and
channel properties. For more information on the properties, see “Properties” on page 4-
24.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object Channels property.

 addCounterInputChannel

4-23

Properties
The properties of the channel object are:

ActiveEdge Rising or falling edges of EdgeCount signals
ActivePulse Active pulse measurement of PulseWidth counter channel
CountDirection Specify direction of counter channel
Device Channel device information
EncoderType Encoding type of counter channel
ID ID of channel in session
InitialCount Specify initial count point
MeasurementType Channel measurement type
Name Specify descriptive name for the channel
Terminal PFI terminal of counter subsystem
ZResetCondition Reset condition for Z-indexing
ZResetEnable Enable reset for Z-indexing
ZResetValue Reset value for Z-indexing

See Also
Functions
addCounterOutputChannel | inputSingleScan | removeChannel | resetCounters
| startBackground | startForeground

Properties
Terminal

Topics
“Acquire Counter Input Data”

Introduced in R2011a

4 Functions — Alphabetical List

4-24

addCounterOutputChannel
Add counter output channel

Syntax
addCounterOutputChannel(s,deviceID,channelID)
ch = addCounterOutputChannel(s,deviceID,channelID,measurementType)
[ch,idx] = addCounterOutputChannel(s,deviceID,channelID,
measurementType)

Description
addCounterOutputChannel(s,deviceID,channelID) adds a counter channel on the
device represented by deviceID with the specified channelID, and channel
measurement type, represented by measurementType, to the session s. Measurement
types are vendor specific.

Tip Use daq.createSession to create a session object before you use this method.

ch = addCounterOutputChannel(s,deviceID,channelID,measurementType)
returns the object ch.

[ch,idx] = addCounterOutputChannel(s,deviceID,channelID,
measurementType) returns the object ch, representing the channel that was added and
the index, idx, which is an index into the array of the session object's Channels property.

Examples

 addCounterOutputChannel

4-25

Add a Counter Output PulseGeneration Channel

s = daq.createSession('ni');
ch = addCounterOutputChannel(s,'cDAQ1Mod3','ctr0','PulseGeneration');
ch.Terminal % View device signal name for pin mapping.

Add Two Counter Output PulseGeneration Channels

s = daq.createSession('ni')
ch = addCounterOutputChannel(s,'cDAQ1Mod3',0:1,'PulseGeneration')

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

deviceID — Device ID
character vector

Device ID as defined by the device vendor specified as a character vector. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created
for the session object.

channelID — Channel ID
numeric value, character vector, or string

Channel ID, specified as a numeric value, character vector, or string, corresponding to the
specific counter channel on the device added to the session. Channel ID 0 corresponds to
the device counter 'ctr0', Channel ID 1 to 'ctr1', and so on. For the related device
signal names and physical pins, see the pinout for your particular device.

You can add a range of channels by specifying the channel ID with a numeric array, or an
array of character vectors or strings.

4 Functions — Alphabetical List

4-26

The index for a channel displayed in the session indicates the channel’s position in the
session. The first channel you add in a session has session index 1, and so on.
Data Types: char | string | cell

measurementType — Channel measurement type
character vector or string

Channel measurement type, specified as a character vector or string. measurementType
represents a vendor-defined measurement type. A valid output measurement type is
'PulseGeneration'.

Output Arguments
ch — Counter output channel object
1-by-n array

Counter output channel that you add, returned as an object containing a 1-by-n array of
vendor specific channel information. Use this channel object to access device and channel
properties.

Device Channel device information
DutyCycle Duty cycle of output channel
Frequency Frequency of generated output
ID ID of channel in session
IdleState Default state of counter output channel
InitialDelay Delay until output channel generates pulses
MeasurementType Channel measurement type
Name Specify descriptive name for the channel

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

 addCounterOutputChannel

4-27

See Also
Functions
addCounterInputChannel | removeChannel | startBackground |
startForeground

Properties
Terminal

Topics
“Generate Pulses on a Counter Output Channel”

Introduced in R2011a

4 Functions — Alphabetical List

4-28

addDigitalChannel
Add digital channel

Syntax
addDigitalChannel(s,deviceID,channelID,measurementType)
ch = addDigitalChannel(s,deviceID,channelID,measurementType)
[ch,idx] = addDigitalChannel(s,deviceID,channelID,measurementType)

Description
addDigitalChannel(s,deviceID,channelID,measurementType) adds one or more
digital channels to the session s, on the device represented by deviceID, with the
specified port and single-line combination and channel measurement type.

Tips

• Before adding digital channels, create a session using daq.createSession.
• Change the Direction property value of bidirectional channels before you read or

write digital data.
• To input and output decimal or hexadecimal values, use these conversion functions:

• decimalToBinaryVector
• binaryVectorToDecimal
• hexToBinaryVector
• binaryVectorToHex

ch = addDigitalChannel(s,deviceID,channelID,measurementType) creates
and displays the digital channels assigned to ch.

 addDigitalChannel

4-29

[ch,idx] = addDigitalChannel(s,deviceID,channelID,measurementType)
additionally creates and displays idx, which is an index into the array of the session
object Channels property.

Examples

Add Digital Channels

Discover available digital devices on your system, then create a session with digital
channels.

Find all installed devices.

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -----------------------------
1 ni Dev1 National Instruments USB-6255
2 ni Dev2 National Instruments USB-6363

Get detailed subsystem information for NI USB-6255:

d(1)

ans =

ni: National Instruments USB-6255 (Device ID: 'Dev1')
 Analog input subsystem supports:
 7 ranges supported
 Rates from 0.1 to 1250000.0 scans/sec
 80 channels ('ai0' - 'ai79')
 'Voltage' measurement type

 Analog output subsystem supports:
 -5.0 to +5.0 Volts,-10 to +10 Volts ranges
 Rates from 0.1 to 2857142.9 scans/sec
 2 channels ('ao0','ao1')
 'Voltage' measurement type

4 Functions — Alphabetical List

4-30

 Digital subsystem supports:
 24 channels ('port0/line0' - 'port2/line7')
 'InputOnly','OutputOnly','Bidirectional' measurement types

 Counter input subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'PulseGeneration' measurement type

Create a session with input, output, and bidirectional channels using 'Dev1':

s = daq.createSession('ni');
addDigitalChannel(s,'dev1','Port0/Line0:1','InputOnly');
ch = addDigitalChannel(s,'dev1','Port0/Line2:3','OutputOnly');
[ch,idx] = addDigitalChannel(s,'dev1','Port2/Line0:1','Bidirectional')

ans =

Data acquisition session using National Instruments hardware:
 Clocked operations using startForeground and startBackground are disabled.
 Only on-demand operations using inputSingleScan and outputSingleScan can be done.
 Number of channels: 6
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- ----------------------- ----- ----
 1 dio Dev1 port0/line0 InputOnly n/a
 2 dio Dev1 port0/line1 InputOnly n/a
 3 dio Dev1 port0/line2 OutputOnly n/a
 4 dio Dev1 port0/line3 OutputOnly n/a
 5 dio Dev1 port2/line0 Bidirectional (Unknown) n/a
 6 dio Dev1 port2/line1 Bidirectional (Unknown) n/a

Input Arguments
s — Data acquisition session
session object

Data acquisition session specified as a session object created using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

 addDigitalChannel

4-31

deviceID — Device ID
character vector

Device ID as defined by the device vendor specified as a character vector. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created
for the session object.
Data Types: char

channelID — Channel ID
character vector or string

Channel ID, or the physical location of the channel on the device, specified as a character
vector or string. Supported values are specific to the vendor and device. You can add a
range of channels using colon syntax, or an array of character vectors or strings. The
index for this channel in the session display indicates this channel’s position in the
session. If you add a channel with channel ID 'Dev1' as the first channel in a session, its
session index is 1.
Data Types: cell | char | string

measurementType — Channel measurement type
character vector or string

Channel measurement type specified as a character vector or string. measurementType
represents a vendor-defined measurement type. Supported measurements are:

• 'InputOnly'
• 'OutputOnly'
• 'Bidirectional'

Data Types: char | string

Output Arguments
ch — Digital channels
array of channel objects

Digital channels, returned as an array of channel objects. ch is a 1-by-n array, in which
each element is a channel object with vendor-specific device and channel properties. See
also the properties in “Digital Input and Output”.

4 Functions — Alphabetical List

4-32

idx — Channel index
numeric

Channel index returned as a numeric value. Use this index to access the channels in the
array of the session Channels property.

See Also
Functions
binaryVectorToDecimal | binaryVectorToHex | daq.createSession |
decimalToBinaryVector | hexToBinaryVector | inputSingleScan |
outputSingleScan | removeChannel | startBackground | startForeground

Topics
“Digital Subsystem Channels”
“Acquire Non-Clocked Digital Data”
“Generate Non-Clocked Digital Data”
“Acquire Digital Data Using an External Clock”
“Acquire Digital Data Using a Shared Clock”
“Acquire Digital Data Using a Counter Output Channel as External Clock”

Introduced in R2012b

 addDigitalChannel

4-33

addFunctionGeneratorChannel
Add function generator channel

Before you work with function generator channels, see “Supported Hardware” and
“Create a Session”.

Syntax
addFunctionGeneratorChannel(s,deviceID,channelID,waveformType)
[ch,idx] = addFunctionGeneratorChannel(s,deviceID,channelID,
waveformType)

Description
addFunctionGeneratorChannel(s,deviceID,channelID,waveformType) adds a
channel on the device represented by deviceID, with the specified channelID and
waveformType to the session s.

[ch,idx] = addFunctionGeneratorChannel(s,deviceID,channelID,
waveformType) creates and displays the object ch, representing the channel that was
added and the index, idx, which is an index into the array of the session object Channels
property.

Examples

Add a Function Generator Channel

Add a channel on a Digilent device with a sine waveform type.

Create a session for Digilent devices.

s = daq.createSession('digilent');

Add a channel with a sine waveform type.

4 Functions — Alphabetical List

4-34

addFunctionGeneratorChannel(s,'AD1',1,'Sine')

ans =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0
 Range: -5.0 to +5.0 Volts
 TerminalConfig: SingleEnded
 Gain: 1
 Offset: 0
 SampleRate: 4096
 WaveformType: Sine
 Name: ''
 ID: '1'
 Device: [1x1 daq.di.DeviceInfo]
MeasurementType: 'Voltage'

Save the Channel Information and the Channel Index of a Function Generator
Channel

Create a session for Digilent devices.

s = daq.createSession('digilent');

Add a channel with a sine waveform type.

[ch,idx] = addFunctionGeneratorChannel(s,'AD1',1,'Sine')

ch =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0
 Range: -5.0 to +5.0 Volts
 TerminalConfig: SingleEnded
 Gain: 1
 Offset: 0
 SampleRate: 4096
 WaveformType: Sine
 Name: ''
 ID: '1'
 Device: [1x1 daq.di.DeviceInfo]

 addFunctionGeneratorChannel

4-35

MeasurementType: 'Voltage'

Properties, Methods, Events

idx =

 1

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

deviceID — Device ID
character vector or string

Device ID as defined by the device vendor, specified as a character vector or string.
Obtain the device ID by calling daq.getDevices. The channel specified for this device is
created for the session object.

channelID — Channel ID
numeric value, character array, or string

Channel ID or the physical location of the channel on the device, added to the session,
specified as a numeric value, character vector, or string. You can add a range of channels
with an array. The index for this channel displayed in the session indicates this channel’s
position in the session. If you add a channel with channel ID 1 as the first channel in a
session, the session index is 1 because of position, not ID.

waveformType — Function generator waveform type
character vector or string

Function generator waveform type specified as a character vector or string. Valid
waveform types include:

4 Functions — Alphabetical List

4-36

• 'Sine'
• 'Square'
• 'Triangle'
• 'RampUp'
• 'RampDown'
• 'DC'
• 'Arbitrary'

Data Types: char | string

Output Arguments
ch — Analog input channel object
1-by-n array

Analog input channel that you add, returned as an object containing a 1xn array of
vendor specific channel specific information. Use this channel object to access device and
channel properties.

idx — Channel index
numeric value

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

See Also
Functions
addAnalogInputChannel | daq.createSession | startForeground

Topics
“Generate a Standard Waveform Using Waveform Function Generation Channels”
“Digilent Analog Discovery Devices”
“Digilent Waveform Function Generation Channels”
“Waveform Types”

 addFunctionGeneratorChannel

4-37

Introduced in R2014b

4 Functions — Alphabetical List

4-38

addlistener
Create event listener

Syntax
lh = addlistener(s,eventName,@callback)
lh = addlistener(s,eventName,@(src,event) expr)

Description
lh = addlistener(s,eventName,@callback) creates a listener for the specified
event, eventName, to execute the callback function, callback at the time of the event.
lh is the variable in which the listener handle is stored. Create a callback function that
executes when the listener detects the specified event. The callback can be any MATLAB
function.

Tip Delete the listener once the operation is complete.

delete(lh)

lh = addlistener(s,eventName,@(src,event) expr) creates a listener for the
specified event, eventName, and fires an anonymous callback function. The anonymous
function uses the specified input arguments and executes the operation specified in the
expression expr. Anonymous functions provide a quick means of creating simple
functions without storing them in a file. For more information, see Anonymous Functions
(MATLAB).

Examples

Add a Listener to an Acquisition Session

Creating a session and add an analog input channel.

 addlistener

4-39

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Add a listener for the DataAvailable event.

lh = addlistener(s,'DataAvailable',@plotData);

Create the plotData callback function and save it as plotData.m.

function plotData(src,event)
 plot(event.TimeStamps,event.Data)
end

Acquire data in the background.

startBackground(s);

Wait for the operation to complete, and delete the listener.

wait(s)
delete(lh)

Add a Listener to a Signal Generation Session Using an Anonymous Function

Create a session and set the IsContinuous property to true.

s = daq.createSession('ni');
s.IsContinuous = true;

Add two analog output channels and create output data for the two channels.

addAnalogOutputChannel(s,'cDAQ1Mod2',0:1,'Voltage');
outputData0 = linspace(-1,1,1000)';
outputData1 = linspace(-2,2,1000)';

Queue the output data.

queueOutputData(s,[outputData0 outputData1]);

Add a listener to call an anonymous function.

lh = addlistener(s,'DataRequired', @(src,event)...
 src.queueOutputData([outputData0 outputData1]));

4 Functions — Alphabetical List

4-40

Generate signals in the background.

startBackground(s);

Perform other MATLAB operations, and then stop the session. If the interim tasks do not
allow enough time for the signal generation, use a pause before stopping.

pause(5)
stop(s)

Delete the listener.

delete(lh)

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

eventName — Event name
'DataAvailable' | 'DataRequired' | 'ErrorOccurred'

Name of the event to listen for, specified as a character vector or string. Supported events
include:

• 'DataAvailable'
• 'DataRequired'
• 'ErrorOccurred'

Data Types: char | string

callback — Callback function
function handle

The callback function to execute, specified as a function handle. The function executes
when the specified event occurs.

 addlistener

4-41

src — Session input argument
variable name

Session input argument to the anonymous function, specified as a variable name.
addlistener sends the data acquisition session object handle into the anonymous
function as this variable.

event — Event input argument
variable name

Event input argument to the anonymous function, specified as a variable name.
addlistener sends the triggering event object handle into the anonymous function as
this variable.

expr — Body of anonymous function
executable text

Body of anonymous function, specified as a line of executable text. The expression can
include the input argument variables names src and event.

Output Arguments
lh — Listener event
event object handle

The event listener returned as an event object handle. Delete the listener once the
operation completes.

See Also
Functions
addAnalogInputChannel | addAnalogOutputChannel | daq.createSession |
startBackground

Properties
DataAvailable Event | DataRequired Event | ErrorOccurred Event

Topics
“Session Creation Workflow”

4 Functions — Alphabetical List

4-42

Introduced in R2010b

 addlistener

4-43

addTriggerConnection
Add trigger connection

Syntax
addTriggerConnection(s,source,destination,type)
tc = addTriggerConnection(s,source,destination,type)
[tc,idx] = addTriggerConnection(s,source,destination,type)

Description
addTriggerConnection(s,source,destination,type) establishes a trigger
connection from the specified source device and terminal to the specified destination
device and terminal, of the specified connection type.

Note You cannot use triggers with audio devices.

Tip Before adding trigger connections, create a session using daq.createSession, and
add channels to the session.

tc = addTriggerConnection(s,source,destination,type) establishes a trigger
connection from the specified source and terminal to the specified destination device and
terminal, of the specified connection type and displays it in the variable tc.

[tc,idx] = addTriggerConnection(s,source,destination,type) establishes a
trigger connection from the specified source device and terminal to the specified
destination device and terminal of the specified connection type, and displays the
connection in the variable tc and the connection index in idx.

Examples

4 Functions — Alphabetical List

4-44

Add External Start Trigger Connection

Create a session and add an analog input channel from Dev1 to the session.

s = daq.createSession('ni')
addAnalogInputChannel(s,'Dev1','ai0','Voltage');

Add a trigger connection from an external device to terminal PFI1 on Dev1 using the
'StartTrigger' connection type.

addTriggerConnection(s,'external','Dev1/PFI1','StartTrigger')

Export Trigger to External Device

To Add trigger connection going to an external destination, create a session and add an
analog input channel from Dev1 to the session.

s = daq.createSession('ni')
addAnalogInputChannel(s,'Dev1','ai0','Voltage');

Add a trigger from terminal PFI1 on Dev1 to an external device using the
'StartTrigger' connection type.

addTriggerConnection(s,'Dev1/PFI1','external','StartTrigger')

Save Trigger Connection

Add a trigger connection from terminal PFI1 on Dev1 to terminal PFI0 on Dev2 using
the 'StartTrigger' connection type and store it in tc.

To display a trigger connection in a variable, create a session and add an analog input
channel from Dev1 and Dev2 to the session.

s = daq.createSession('ni')
addAnalogInputChannel(s,'Dev1','ai0','Voltage');
addAnalogInputChannel(s,'Dev2','ai1','Voltage');

Save the trigger connection in tc.

 addTriggerConnection

4-45

tc = addTriggerConnection(s,'Dev1/PFI1','Dev2/PFI0','StartTrigger');

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

source — Source of trigger connection
character vector or string

Source for the trigger connection, specified as a character vector or string. Valid values
are:

• 'external' — for a trigger based on an external event. A session with an external
trigger source has a timeout determined by the ExternalTriggerTimeout property; to
disable the timeout, set the ExternalTriggerTimeout value to Inf.

• 'deviceID/terminal' — for a trigger sourced on a specific terminal on a device in
your session. For example, 'Dev1/PFI1', for more information on device ID see
Device. For more information on terminal see Terminals.

• 'chassisId/terminal' — for a trigger sourced on a specific terminal on a chassis
in your session, for example, 'cDAQ1/PFI1'. For more information on terminal see
Terminals.

You can have only one trigger source in a session.

destination — Destination of trigger connection
character vector or string

Destination for the trigger connection, specified as a character vector or string. Valid
values are:

• 'external' — for a trigger source connected to an external device.
• 'deviceID/terminal' — for a trigger source connected to another device in your

session, for example, 'Dev1/PFI1'. For more information on device ID see Device.
For more information on terminal see Terminals.

4 Functions — Alphabetical List

4-46

• 'chassisId/terminal' — for a trigger source connected to a chassis in your
session, for example, 'cDAQ1/PFI1'. For more information on terminal see
Terminals.

You can also specify multiple destination devices as an array, for example, {'Dev1/
PFI1','Dev2/PFI1'}.

type — Trigger connection type
character vector or string

The trigger connection type, specified as a character vector or string. 'StartTrigger'
is the only connection type available for trigger connections at this time.

Output Arguments
tc — Trigger connection
1-by-n object array

The trigger connection that you add, returned as an object of trigger connection
information. The object contains the following properties.

Destination Indicates trigger destination terminal
ExternalTriggerTimeout Specify maximum wait time for external trigger
IsWaitingForExternalTrigger Indicates if synchronization is waiting for an external

trigger
Source Indicates trigger source terminal
Terminals Terminals available on device or CompactDAQ chassis
TriggerCondition Specify condition that must be satisfied before trigger

executes
TriggersPerRun Indicate the number of times the trigger executes in an

operation
TriggersRemaining Indicates the number of trigger to execute in an operation
TriggerType Type of trigger executed

idx — Channel index
numeric

 addTriggerConnection

4-47

Channel index returned as a numeric value. Through the index you can access the array
of the session object Channels property.

See Also
Functions
addClockConnection | daq.createSession | removeConnection

Topics
“Trigger Connections”
“Synchronization”
“Acquire Voltage Data Using a Digital Trigger”
“Multiple-Device Synchronization Using USB or PXI Devices”
“Multiple-Chassis Synchronization with CompactDAQ Devices”

Introduced in R2012a

4 Functions — Alphabetical List

4-48

Analog Input Recorder
Acquire and visualize analog input signals

Description
The Analog Input Recorder provides a graphical interface to data acquisition devices.

Using this app, you can:

• Configure device channels and acquisition properties.
• Preview signals on several analog input channels for a selected device.
• Record analog input data for a finite period (foreground) or continuously

(background).
• Generate MATLAB code that can perform the equivalent acquisition.

Open the Analog Input Recorder App
• MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app.
• MATLAB command prompt: Enter analogInputRecorder.

Note Opening the Analog Input Recorder deletes all your existing data acquisition
sessions in MATLAB.

The session created by the Analog Input Recorder is not accessible from the MATLAB
command line.

See Also

Topics
“Acquire Data with the Analog Input Recorder”

 Analog Input Recorder

4-49

Introduced in R2017b

4 Functions — Alphabetical List

4-50

binaryVectorToDecimal
Convert binary vector value to decimal value

Syntax
binaryVectorToDecimal(binaryVector)
binaryVectorToDecimal(binaryVector,bitOrder)

Description
binaryVectorToDecimal(binaryVector) converts a binary vector to a decimal.

binaryVectorToDecimal(binaryVector,bitOrder) converts a binary vector with
the specified bit orientation to a decimal .

Examples

Convert a Binary Vector to a Decimal Value

binaryVectorToDecimal([1 1 0])

ans =

 6

Convert a Binary Vector Array to a Decimal Value

binaryVectorToDecimal([1 0 0 0; 0 1 0 0])

ans =

 binaryVectorToDecimal

4-51

 8
 4

Convert a Binary Vector with LSB First

binaryVectorToDecimal([1 0 0 0; 0 1 0 0],'LSBFirst')

ans =

 1
 2

Convert a Binary Vector Array with LSB First

binaryVectorToDecimal([1 1 0],'LSBFirst')

ans =

 6

Input Arguments
binaryVector — Binary vector to convert to decimal
binary Vectors

Binary vector to convert to a decimal specified as a single binary vector or a row or
column-based array of binary vectors.

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string.
Accepted values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

4 Functions — Alphabetical List

4-52

See Also
Functions
binaryVectorToHex | decimalToBinaryVector | hexToBinaryVector

Topics
“Generate Signals Using Decimal Data Across Multiple Lines”

Introduced in R2012b

 binaryVectorToDecimal

4-53

binaryVectorToHex
Convert binary vector value to hexadecimal

Syntax
hexval = binaryVectorToHex(binaryVector)
hexval = binaryVectorToHex(binaryVector,bitOrder)

Description
hexval = binaryVectorToHex(binaryVector) converts the input binary vector to a
hexadecimal.

hexval = binaryVectorToHex(binaryVector,bitOrder) converts the input binary
vector using the specified bit orientation.

Examples

Convert a Binary Vector to a Hexadecimal
hexval = binaryVectorToHex([0 0 1 1 1 1 0 1])

hexval =

 3D

Convert an Array of Binary Vectors to a Hexadecimal
hexval = binaryVectorToHex([1 1 0 0 0 1 0 0 ; 0 0 0 0 1 0 1 0])

hexval =

 'C4'
 '0A'

4 Functions — Alphabetical List

4-54

The output is appended with 0s to make all hex values the same length character vectors.

Convert a Binary Vector with LSB First

hexval = binaryVectorToHex([0 0 1 1 1 1 0 1],'LSBFirst')

hexval =

 BC

Convert a Binary Vector Array with LSB First
hexval = binaryVectorToHex([1 1 0 0 0 1 0 0 ; 0 0 0 0 1 0 1 0],'LSBFirst')

hexval =

 '23'
 '50'

If necessary, the output is appended with 0s to make all hex values the same length
character vectors.

Note The binary vector array is converted to a cell array of hexadecimal numbers. If you
input a single binary vector, it is converted to a hexadecimal character vector.

Input Arguments
binaryVector — Binary vector to convert to hexadecimal
numeric vector of 1s and 0s

The binary vector to convert to hexadecimal specified as a numeric vector with 0s and 1s.
The vector can be a column or row vector.

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string.
Accepted values are:

 binaryVectorToHex

4-55

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

Output Arguments
hexval — Hexadecimal value
character vector

Hexadecimal value returned as a character vector.

See Also
Functions
binaryVectorToDecimal | decimalToBinaryVector | hexToBinaryVector

Topics
“Acquire Digital Data in Hexadecimal Values”

Introduced in R2012b

4 Functions — Alphabetical List

4-56

daq.createSession
Create data acquisition session for specific vendor hardware

Syntax
session = daq.createSession(vendor)

Description
session = daq.createSession(vendor) creates a session object for configuring and
operating data acquisition devices from the specified vendor.

Examples

Create Data Acquisition Session for National Instruments Devices

Create a data acquisition session object s, for National Instruments® devices.

s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added.

Input Arguments
vendor — Vendor name
character vector or string

Vendor name for the device you want to create a session for, specified as a character
vector. Valid vendors are:

 daq.createSession

4-57

• 'ni'
• 'digilent'
• 'directsound'
• 'adi'
• 'mcc'

Data Types: char | string

Output Arguments
session — Data acquisition session
session object

Data acquisition session, returned as a session object. Use the data acquisition session for
acquisition and generation operations. Create one session per vendor and use that vendor
session to perform all data acquisition operations.

The session has the following properties:

4 Functions — Alphabetical List

4-58

Channels Array of channel objects associated with session
object

Connections Array of connections in session
DurationInSeconds Specify duration of acquisition
IsContinuous Specify if operation continues until manually

stopped
IsDone Indicate if session operation is complete
IsLogging Indicate if hardware is acquiring or generating

data
IsNotifyWhenDataAvailableExceedsAuto

Control if
NotifyWhenDataAvailableExceeds is set
automatically

IsNotifyWhenScansQueuedBelowAuto
Control if NotifyWhenScansQueuedBelow is
set automatically

NotifyWhenDataAvailableExceeds Control firing of DataAvailable event
NotifyWhenScansQueuedBelow Control firing of DataRequired event
NumberOfScans Number of scans for operation when starting
Range Specify channel measurement range
Rate Rate of operation in scans per second
RateLimit Limit of rate of operation based on hardware

configuration
ScansAcquired Number of scans acquired during operation
ScansOutputByHardware Indicate number of scans output by hardware
ScansQueued Indicate number of scans queued for output
UserData Custom data
Vendor Vendor information associated with session

object

 daq.createSession

4-59

See Also
Functions
addAnalogInputChannel | addAnalogOutputChannel | addAudioInputChannel |
addAudioOutputChannel | addCounterInputChannel |
addCounterOutputChannel | addDigitalChannel | daq.getDevices |
daq.getVendors

Introduced in R2010b

4 Functions — Alphabetical List

4-60

daq.getDevices
Display available data acquisition devices

Syntax
daq.getDevices
device = daq.getDevices

Description
daq.getDevices lists devices available to your system.

device = daq.getDevices stores this list in the variable device.

Tips Devices not supported by the toolbox are denoted with an *. For a complete list of
supported CompactDAQ devices, see https://www.mathworks.com/hardware-
support/data-acquistion-software.html.

Examples

Get a List of Devices

Get a list of all devices available to your system and store it in the variable d.

 d = daq.getDevices

d =

index Vendor Device ID Description
----- ----------- --------- ---
1 directsound Audio0 DirectSound Primary Sound Capture Driver
2 directsound Audio1 DirectSound Digital Audio (S/PDIF) (High Definition Audio Device)
3 directsound Audio3 DirectSound HP 4120 (2- HP 4120)
4 ni cDAQ1Mod1 National Instruments NI 9205
5 ni cDAQ1Mod2 National Instruments NI 9263
6 ni cDAQ1Mod3 National Instruments NI 9234
7 ni cDAQ2Mod1 National Instruments NI 9402

 daq.getDevices

4-61

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html

8 ni cDAQ2Mod2 National Instruments NI 9205
9 ni cDAQ2Mod3 National Instruments NI 9375
10 ni Dev1 National Instruments USB-6211
11 ni Dev2 National Instruments USB-6218
12 ni Dev3 National Instruments PCI-6255
13 ni PXI1Slot2 National Instruments PXI-4461
14 ni PXI1Slot3 National Instruments PXI-4461

To get detailed information about a module on the chassis, type d(index). For example,
to get information about NI 9265, which has the index 13, type:
 d(13)

ans =

ni: National Instruments NI 9402 (Device ID: 'cDAQ1Mod5')
 Counter input subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 4 channels ('ctr0','ctr1','ctr2','ctr3')
 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 4 channels ('ctr0','ctr1','ctr2','ctr3')
 'PulseGeneration' measurement type

This module is in slot 5 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

You can also click on the name of the device in the list to access detailed device
information, which includes:

• subsystem type
• rate
• number of available channels
• measurement type

Output Arguments
device — Device list
array of DeviceInfo objects

Device list, returned as an array of DeviceInfo objects.

See Also
Functions
daq.createSession | daq.getVendors

4 Functions — Alphabetical List

4-62

Topics
“Hardware Discovery and Session Setup”

Introduced in R2010b

 daq.getDevices

4-63

daq.getVendors
Display available vendors

Syntax
daq.getVendors
vendor = daq.getVendors

Description
daq.getVendors lists vendors available to your machine and MATLAB.

vendor = daq.getVendors assigns the output list to the variable vendor.

Examples

Get the List of Available Vendors

Get a list of all vendors available to your machine and MATLAB, and store it in the
variable v.

v = daq.getVendors

v =

Number of vendors: 5

index ID Operational Comment
----- ----------- ----------- ---------------------------
1 ni true National Instruments
2 adi true Analog Devices Inc.
3 directsound true DirectSound
4 digilent true Digilent Inc.
5 mcc true Measurement Computing Corp.

Programmatically determine if 'adi' is an operational vendor.

for idx = 1:length(v)
 if strcmp(v(idx).ID,'adi')

4 Functions — Alphabetical List

4-64

 v(idx).IsOperational
 end
end

ans =

 logical

 1

Output Arguments
vendor — Vendor list
array of VendorInfo objects

Vendor list, returned as an array of VendorInfo objects. This represents the vendor
information available to your system.

For a list of vendors currently supported by Data Acquisition Toolbox, and instructions for
installing necessary support packages, see “Data Acquisition Toolbox Supported
Hardware”. For information on using the SDK to extend support for other vendors, see
“Build Custom Adaptors”.

See Also
Functions
daq.createSession | daq.getDevices

Topics
“Hardware Discovery and Session Setup”
“Data Acquisition Toolbox Supported Hardware”
“Build Custom Adaptors”

Introduced in R2010b

 daq.getVendors

4-65

daqhelp
Help for toolbox interface

Syntax
daqhelp
daqhelp('functionname')
helptext = daqhelp('functionname')

Description
daqhelp displays a comprehensive listing of Data Acquisition Toolbox functions along
with a brief description of each. Links in the output provide access to more detailed
information.

daqhelp('functionname') returns help for the function specified as a character
vector or string.

helptext = daqhelp('functionname') assigns the help text output to the variable
out.

Examples

Get Toolbox Help

Get overview help for Data Acquisition Toolbox.

daqhelp

 Data Acquisition Toolbox
 Version 3.12 (R2018a Prerelease) 08-Aug-2017
 Data Acquisition Toolbox Session-Based Interface Support

 To control these data acquisition devices, you use a daq.Session object
 to configure and control one or more devices.

4 Functions — Alphabetical List

4-66

 In a typical workflow,
 (1) Discover hardware devices using daq.getDevices
 (2) Create a daq Session using daq.createSession
 (3) Add device channels
 (4) Add device connections
 (5) Set session and channel properties
 (6) Perform on demand operations using inputSingleScan/outputSingleScan
 (7) Perform clocked operations using startForeground/startBackground

 (1) Device enumeration and discovery:
 daq.getDevices - Show data acquisition devices available
 daq.getVendors - Show known data acquisition vendors
 daq.reset - Reinitialize all data acquisition devices and sessions.

This represents only a partial view of the total output.

Get Function Help

Get help for a specified function.

daqhelp('daq.createSession')

 daq.createSession Create a data acquisition session for a given vendor
 Returns a daq.Session object that represents a session with hardware
 from the specific vendor.

 SESSION = daq.createSession(VENDOR_ID) returns a session object specific
 to the vendor ID specified by the string VENDOR_ID that you can configure to
 perform operations. Type daq.getVendors() for a list of available
 vendors.

 Example:
 s = daq.createSession('ni');
 s.addAnalogInputChannel('cDAQ1Mod1', 'ai0', 'Voltage');
 s.startForeground();

 See also daq.getDevices, daq.getVendors, daq.reset

Return Function Help Text to Variable

Get help for a specified function, assigning the help text to a variable.

 daqhelp

4-67

helptext = daqhelp('daq.createSession');

Input Arguments
'functionname' — Function for which you want help
char vector or string

Function for which you want help, specified as a character vector or string.
Example: 'daq.createSession'
Data Types: char | string

Output Arguments
helptext — Help text
char vector

Help text, returned as a character vector.

Introduced before R2006a

4 Functions — Alphabetical List

4-68

daqreset
Reset Data Acquisition Toolbox

Syntax
daqreset

Description
daqreset resets Data Acquisition Toolbox and deletes all data acquisition session and
device objects.

Examples

Reset the Toolbox

Create a data acquisition session, then reset the toolbox.

s = daq.createSession('adi');
resetdaq
s

s =

 handle to deleted Session

See Also
Functions
daq.createSession

Introduced before R2006a

 daqreset

4-69

decimalToBinaryVector
Convert decimal value to binary vector

Syntax
decimalToBinaryVector(decimalNumber)
decimalToBinaryVector(decimalNumber,numberOfBits)
decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder)
decimalToBinaryVector(decimalNumber,[],bitOrder)

Description
decimalToBinaryVector(decimalNumber) converts a positive decimal number to a
binary vector, represented using the minimum number of bits.

decimalToBinaryVector(decimalNumber,numberOfBits) converts a decimal
number to a binary vector with the specified number of bits.

decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder) converts a
decimal number to a binary vector with the specified number of bits in the specified bit
ordering.

decimalToBinaryVector(decimalNumber,[],bitOrder) converts a decimal
number to a binary vector with default number of bits in the specified bit ordering.

Examples

Convert a Decimal to a Binary Vector

decimalToBinaryVector(6)

4 Functions — Alphabetical List

4-70

ans =

 1 1 0

Convert an Array of Decimals to a Binary Vector Array

decimalToBinaryVector(0:4)

ans =

 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0

Convert a Decimal into a Binary Vector of Specific Bits

decimalToBinaryVector(6, 8, 'MSBFirst')

ans =

 0 0 0 0 0 1 1 0

Convert a Decimal into a Binary Vector with LSB First

decimalToBinaryVector(6, [], 'LSBFirst')

ans =

 0 1 1

Convert an Array of Decimals into a Binary Vector Array with LSB First

decimalToBinaryVector(0:4, 4, 'LSBFirst')

ans =

 decimalToBinaryVector

4-71

 0 0 0 0
 1 0 0 0
 0 1 0 0
 1 1 0 0
 0 0 1 0

Input Arguments
decimalNumber — Number to convert to binary vector
numeric

The number to convert to a binary vector specified as a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

numberOfBits — Number of bits required to correctly represent the decimal
number
numeric

The number of bits required to correctly represent the decimal. This is an optional
argument. If you do not specify the number of bits, the number is represented using the
minimum number of bits needed. By default minimum number of bits needed to represent
the value is specified, unless you specify a value

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string.
Accepted values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

See Also
Functions
binaryVectorToDecimal | binaryVectorToHex | hexToBinaryVector

4 Functions — Alphabetical List

4-72

Topics
“Generate Signals Using Decimal Data Across Multiple Lines”

Introduced in R2012b

 decimalToBinaryVector

4-73

hexToBinaryVector
Convert hexadecimal value to binary vector

Syntax
hexToBinaryVector(hexNumber)
hexToBinaryVector(hexNumber,numberOfBits)
hexToBinaryVector(hexNumber,numberOfBits,bitOrder)

Description
hexToBinaryVector(hexNumber) converts hexadecimal numbers to a binary vector.

hexToBinaryVector(hexNumber,numberOfBits) converts hexadecimal numbers to a
binary vector with the specified number of bits.

hexToBinaryVector(hexNumber,numberOfBits,bitOrder) converts hexadecimal
numbers to a binary vector with the specified number of bits in the specified bit ordering.

Examples

Convert a hexadecimal to a binary vector

hexToBinaryVector('A1')

ans=

 1 0 1 0 0 0 0 1

Convert a hexadecimal with a leading 0 to a binary Vector

hexToBinaryVector('0xA')

4 Functions — Alphabetical List

4-74

ans=

 1 0 1 0

Convert an Array of Hexadecimal Numbers to a Binary Vector

hexToBinaryVector(['A1'; 'B1'])

ans=

 1 0 1 0 0 0 0 1
 1 0 1 1 0 0 0 1

Convert a Hexadecimal Number into a Binary Vector of Specific Bits

hexToBinaryVector('A1',12, 'MSBFirst')

ans=

 0 0 0 0 1 0 1 0 0 0 0 1

Convert a Cell Array of Hexadecimal Numbers into a Binary Vector of Specific
Bits

hexToBinaryVector({'A1';'B1'},8)

ans=

 1 0 1 0 0 0 0 1
 1 0 1 1 0 0 0 1

Convert a Hexadecimal into a Binary Vector with LSB First

hexToBinaryVector('A1', [], 'LSBFirst')

 hexToBinaryVector

4-75

ans=

 1 0 0 0 0 1 0 1

Input Arguments
hexNumber — Hexadecimal to convert to binary vector
hexadecimal value

Hexadecimal number to convert to a binary vector, specified as a character vector or
string.
Data Types: char | string

numberOfBits — Number of bits to represent the decimal number
numeric

Number of bits to represent the decimal number, specified as a numeric value. This is an
optional argument. If you do not specify the number of bits, the number is represented
using the minimum number of bits needed.

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string.
Accepted values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

See Also
Functions
binaryVectorToDecimal | binaryVectorToHex | decimalToBinaryVector

Topics
“Acquire Digital Data in Hexadecimal Values”

4 Functions — Alphabetical List

4-76

Introduced in R2012b

 hexToBinaryVector

4-77

inputSingleScan
Acquire single scan from all input channels

Syntax
data = inputSingleScan(s);
[data,triggerTime] = inputSingleScan(s);

Description
data = inputSingleScan(s); returns an immediately acquired single scan from each
input channel in the session as a 1-by-n array of doubles. The value is stored in data,
where n is the number of input channels in the session.

Tip To acquire more than a single scan, use startForeground.

[data,triggerTime] = inputSingleScan(s); returns an immediately acquired
single scan from each input channel in the session as a 1-by-n array of doubles. The value
is stored in data, where n is the number of input channels in the session and the
MATLAB serial date timestamp representing the time the data is acquired is returned in
triggerTime.

Examples

Acquire Single Analog Input Scan

Acquire a single input from an analog channel.

Create a session and add two analog input channels:

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1',1:2,'Voltage');

4 Functions — Alphabetical List

4-78

Input a single scan:

 data = inputSingleScan(s)

data =

 -0.1495 0.8643

Acquire Single Digital Input Scan

Acquire a single input from a digital channel and get data and the trigger time of the
acquisition.

Create a session and add two digital channels with InputOnly measurement type:

s = daq.createSession('ni');
addDigitalChannel(s,'dev1','Port0/Line0:1','InputOnly');

Input a single scan:

 [data,triggerTime] = inputSingleScan(s)

Acquire Single Counter Input Scan

Acquire a single input from a counter channel.

Create a session and add a counter input channel with EdgeCount measurement type:

s = daq.createSession('ni');
addCounterInputChannel(s,'Dev1',0,'EdgeCount');

Input a single edge count:

 data = inputSingleScan(s)

Input Arguments
s — Data acquisition session
session object

 inputSingleScan

4-79

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

Output Arguments
data — Value from acquired data
array of double

Value from acquired data, returned as a 1-by-n array of doubles.

triggerTime — Timestamp of acquired data
numeric

Timestamp of acquired data which is a MATLAB serial date timestamp representing the
absolute time when timeStamps = 0.

See Also
Functions
addAnalogInputChannel | addCounterInputChannel | addDigitalChannel |
daq.createSession | startForeground

Topics
“Acquire Non-Clocked Digital Data”
“Acquire Counter Input Data”

Introduced in R2010b

4 Functions — Alphabetical List

4-80

outputSingleScan
Generate single scan on all output channels

Syntax
outputSingleScan(s,data)

Description
outputSingleScan(s,data) outputs a single scan of data on one or more analog
output channels.

Examples

Analog Output

Output a single scan on two analog output voltage channels

Create a session and add two analog output channels.

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2',0:1,'Voltage');

Create an output value and output a single scan for each channel added.

outputSingleScan(s,[1.5 4]);

Digital Output

Output one value on each of two lines on a digital channel

Create a session and add two digital channels from port 0 that measures output only:

 outputSingleScan

4-81

s = daq.createSession('ni');
addDigitalChannel(s,'dev1','Port0/Line0:1','OutputOnly')

Output one value each on the two lines:

outputSingleScan(s,[0 1])

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

data — Data to output
doubles

Data to output, represented as a 1-by-n matrix of doubles, where n is the number of
output channels in the session.

See Also
Functions
addAnalogOutputChannel | addDigitalChannel | daq.createSession |
inputSingleScan

Introduced in R2010b

4 Functions — Alphabetical List

4-82

prepare
Prepare session for operation

Syntax
prepare(s)

Description
prepare(s) configures and allocates hardware resources for the session s and reduces
the latency of startBackground and startForeground functions. There must be at
least one channel in the session before you can call this function. Use of this function is
optional; it is automatically called as needed.

Examples

Prepare Session

Create a session with one channel, and prepare it for operation.

s = daq.createSession('directsound');
ch = addAudioInputChannel(s,'Audio1',1);
prepare(s)

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

 prepare

4-83

See Also
Functions
daq.createSession | release | startBackground | startForeground

Introduced in R2010b

4 Functions — Alphabetical List

4-84

queueOutputData
Queue data to be output

Syntax
queueOutputData(s,data)

Description
queueOutputData(s,data) queues data to be output. When generating output signals,
you must queue data before you call startForeground or startBackground.

Examples

Queue Output Data for a Single Channel

Create a session, add an analog output channel, and queue some data to output.

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage');
queueOutputData(s,linspace(-1,1,1000)');
startForeground(s)

Queue Output Data for Multiple Channels

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2',0:1,'Voltage');
data0 = linspace(-1,1,1000)';
data1 = linspace(-2,2,1000)';

 queueOutputData

4-85

queueOutputData(s,[data0 data1]);
startBackground(s);

Input Arguments
s — Data acquisition session
session object handle

Data acquisition session, specified as a session object handle. Create the session object
using daq.createSession. Use the data acquisition session for acquisition and
generation operations. Create one session per vendor and use that vendor session to
perform all data acquisition operations.

data — Output data values
array of doubles

Output data values, specified as an m-by-n matrix of doubles, where m is the number of
scans to generate, and n is the number of output channels in the session.

See Also
Functions
addAnalogOutputChannel | addDigitalChannel | daq.createSession |
startBackground | startForeground

Introduced in R2010b

4 Functions — Alphabetical List

4-86

release
Release session hardware resources

Syntax
release(s)

Description
release(s) releases all reserved hardware resources in the session s, and flushes any
data you have queued in the hardware in that session.

A session might reserve exclusive access to the hardware associated with it. If you need
to use the hardware in another session or by applications other than MATLAB, use
release(s) to unreserve the hardware and clear its data.

Hardware resources associated with a session are automatically released when you delete
the session object or assign a different value to the variable containing the session object.

Examples

Release Session Hardware

Create a session and add an analog input voltage channel and acquire data in the
foreground:

s1 = daq.createSession('ni');
addAnalogInputChannel(s1,'cDAQ3Mod1','ai0','Voltage');
startForeground(s1)

Release the session hardware and create another session object with an analog input
voltage channel on the same device as the previous session. Acquire in the foreground:

release(s1);
s2 = daq.createSession('ni');

 release

4-87

addAnalogInputChannel(s2,'cDAQ3Mod1','ai2','Voltage');
startForeground(s2);

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

See Also
Functions
daq.createSession | prepare | startBackground | startForeground

Introduced in R2010b

4 Functions — Alphabetical List

4-88

removeChannel
Remove channel from session object

Syntax
removeChannel(s,idx);

Description
removeChannel(s,idx); removes the channel specified by idx from the session object
s.

Examples

Remove Channels from a Session

Start with a session s, to which you add two analog input and two analog output voltage
channels and display the channel information.

s

s =

Data acquisition session using National Instruments hardware:
 No data queued. Will run at 1000 scans/second.
 Operation starts immediately.
 Number of channels: 4
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ------------------- ---------------- ----
 1 ai cDAQ1Mod4 ai0 Voltage (SingleEnd) -10 to +10 Volts
 2 ai cDAQ1Mod4 ai1 Voltage (SingleEnd) -10 to +10 Volts
 3 ao cDAQ1Mod2 ao0 Voltage (Diff) -10 to +10 Volts
 4 ao cDAQ1Mod2 ao1 Voltage (Diff) -10 to +10 Volts

Remove channel 'ai0' with the index 1 from the session:

removeChannel(s,1)

To see how the indices shift after you remove a channel, type:

 removeChannel

4-89

s

s =

Data acquisition session using National Instruments hardware:
 No data queued. Will run at 1000 scans/second.
 All devices synchronized using cDAQ1 CompactDAQ chassis backplane. (Details)
 Number of channels: 3
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ------------------- ---------------- ----
 1 ai cDAQ1Mod4 ai1 Voltage (SingleEnd) -10 to +10 Volts
 2 ao cDAQ1Mod2 ao0 Voltage (Diff) -10 to +10 Volts
 3 ao cDAQ1Mod2 ao1 Voltage (Diff) -10 to +10 Volts

Remove the first output channel 'ao0' at index 2:

removeChannel(s,2);

The session now displays one input and one output channel:

s.Channels

ans =

Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ------------------- ---------------- ----
 1 ai cDAQ1Mod4 ai1 Voltage (SingleEnd) -10 to +10 Volts
 2 ao cDAQ1Mod2 ao1 Voltage (Diff) -10 to +10 Volts

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

idx — Index of channel
numeric

Channel index, specified as a numeric value. Use the index of the channel that you want
to remove from the session.

4 Functions — Alphabetical List

4-90

See Also
Functions
addAnalogInputChannel | addAnalogOutputChannel | addAudioInputChannel |
addAudioOutputChannel | addCounterInputChannel |
addCounterOutputChannel | addDigitalChannel

Introduced in R2010b

 removeChannel

4-91

removeConnection
Remove clock or trigger connection

Syntax
removeConnection(s,idx)

Description
removeConnection(s,idx) removes the specified clock or trigger with the index idx,
from the session. The connected device remains in the session, but is no longer
synchronized with other connected devices in the session.

Examples

Remove a Clock and Trigger Connection

Create clock and trigger connection in the session s.

s = daq.createSeion('ni');
addAnalogInputChannel(s,'Dev1','ai0','Voltage')
addAnalogInputChannel(s,'Dev2','ai0','Voltage')
addAnalogInputChannel('Dev3','ai0','Voltage')
addTriggerConnection(s,'Dev1/PFI0',{'Dev2/PFI0','Dev3/PFI0'}','StartTrigger');
addClockConnection(s,'Dev1/PFI1',{'Dev2/PFI1','Dev3/PFI1'},'ScanClock');

View existing synchronization connection .

s.Connections

ans=

Start Trigger is provided by 'Dev1' at 'PFI0' and will be received by:
 'Dev2' at terminal 'PFI0'
 'Dev3' at terminal 'PFI0'

4 Functions — Alphabetical List

4-92

Scan Clock is provided by 'Dev1' at 'PFI1' and will be received by:
 'Dev2' at terminal 'PFI1'
 'Dev3' at terminal 'PFI1'

 index Type Source Deination
 ----- ------------ --------- -----------
 1 StartTrigger Dev1/PFI0 Dev2/PFI0
 2 StartTrigger Dev1/PFI0 Dev3/PFI0
 3 ScanClock Dev1/PFI1 Dev2/PFI1
 4 ScanClock Dev1/PFI1 Dev3/PFI1

Remove the trigger connection with the index 2 from Dev3/PFI0 to Dev1/PFI0:

removeConnection(s,2);

View updated connection

s.Connections

an=

Start Trigger is provided by 'Dev1' at 'PFI0' and will be received by
'Dev2' at terminal 'PFI0'.
Scan Clock is provided by 'Dev1' at 'PFI1' and will be received by:
 'Dev2' at terminal 'PFI1'
 'Dev3' at terminal 'PFI1'

 index Type Source Deination
 ----- ------------ --------- -----------
 1 StartTrigger Dev1/PFI0 Dev2/PFI0
 2 ScanClock Dev1/PFI1 Dev2/PFI1
 3 ScanClock Dev1/PFI1 Dev3/PFI1

Notice that the connections are re-indexed.

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation

 removeConnection

4-93

operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

idx — Index of connection
numeric value

Index of the connection you want to remove, specified as a numeric value.

See Also
Functions
addClockConnection | addTriggerConnection | daq.createSession

Topics
“Trigger Connections”
“Clock Connections”
“Synchronization”

Introduced in R2012a

4 Functions — Alphabetical List

4-94

resetCounters
Reset counter channel to initial count

Syntax
resetCounters(s)

Description
resetCounters(s) resets the current value of counter channels configured in the
session object, s, to the value specified by the InitialCount property on each channel.

Tips

• Reset counters only if you are performing on-demand operations using
inputSingleScan or outputSingleScan.

• Create an acquisition session and add a channel before you use this function. See
daq.createSession for more information.

Examples

Reset Counters

Create a session, then add a counter channel with an EdgeCount measurement type and
acquire data.

s = daq.createSession ('ni');
addCounterInputChannel(s,'cDAQ1Mod5',0,'EdgeCount');
inputSingleScan(s)

ans =

 756

 resetCounters

4-95

Reset the counter to the default value, 0, and acquire data again.

resetCounters(s)
inputSingleScan(s)

ans =

 303

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

See Also
Functions
addCounterInputChannel | daq.createSession | inputSingleScan

Topics
“Acquire Counter Input Data”
“Generate Pulse Data on a Counter Channel”

Introduced in R2011a

4 Functions — Alphabetical List

4-96

startBackground
Start background operations

Syntax
startBackground(s);

Description
startBackground(s); starts the operation of the session object, s, without blocking
MATLAB command line and other code. To block MATLAB execution, use
startForeground.

When you use startBackground(s) with analog input channels, the operation uses the
DataAvailable event to deliver the acquired data. This event is fired periodically while
an acquisition is in progress. For more information, see “Event and Listener Concepts”
(MATLAB).

When you add analog output channels to the session, you must call queueOutputData()
before calling startBackground().

During a continuous generation, the DataRequired event is fired periodically to request
additional data to be queued to the session. See DataRequired for more information.

By default, the IsContinuous property is set to false and the operation stops
automatically. If you have set it to true, use stop to stop background operations
explicitly.

Use wait to block MATLAB execution until a background operation is complete.

Tips

• Create an acquisition session and add a channel before you use this method. See
daq.createSession for more information.

• If your session has analog input channels, you must use a DataAvailable event to
receive the acquired data in a background acquisition.

 startBackground

4-97

• If your session has analog output channels and is continuous, you can use a
DataRequired event to queue additional data during background generations.

• Call prepare to reduce the latency associated with startup and to preallocate
resources.

• Use an ErrorOccurred event to display errors during an operation.

Examples

Acquire Data in the Background

Create a session and add a listener. Use the listener callback function to access the
acquired data.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');
lh = addlistener(s,'DataAvailable',@plotData);

function plotData(src,event)
 plot(event.TimeStamps,event.Data)
end

Start the session and perform other MATLAB operations.

startBackground(s);

Perform other MATLAB operations.

Generate Data Continuously

For a continuous background generation, add a listener event to queue additional data to
be output.

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2',0,'Voltage');
s.IsContinuous = true;
s.Rate=10000;
data=linspace(-1,1,5000)';
lh = addlistener(s,'DataRequired', ...

4 Functions — Alphabetical List

4-98

 @(src,event) src.queueOutputData(data));
queueOutputData(s,data)
startBackground(s);

Perform other MATLAB operations during the generation.

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

See Also
DataAvailable | DataRequired | ErrorOccurred | addAnalogInputChannel |
addAnalogOutputChannel | addAudioInputChannel | addDigitalChannel |
addlistener | daq.createSession | queueOutputData | startForeground

Topics
“Acquire Data in the Background”
“Generate Signals in the Background”
“Generate Signals in the Background Continuously”

Introduced in R2010b

 startBackground

4-99

startForeground
Start foreground operations

Syntax
startForeground(s);
data = startForeground(s);
[data,timeStamps,triggerTime] = startForeground(s);

Description
startForeground(s); starts operations of the session object, s, and blocks MATLAB
command line and other code until the session operation is complete.

data = startForeground(s); returns the data acquired in the output parameter,
data.

[data,timeStamps,triggerTime] = startForeground(s); returns the data
acquired, timestamps relative to the time the operation is triggered, and a trigger time
indicating the absolute time the operation was triggered.

Examples

Acquire Analog Data

Acquire data by creating a session with an analog input channel.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Start the acquisition and save the acquired data into the variable data:

 data = startForeground(s);

4 Functions — Alphabetical List

4-100

Generate Analog Data

Generate a signal by creating a session with an analog output channel.

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage');

Create and queue an output signal and start the generation:

outputSignal = linspace(-1,1,1000)';
queueOutputData(s,outputSignal);
startForeground(s);

Acquire Analog Input Data and Timestamps

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Start the acquisition and save the acquired data in the variable data, the acquisition
timestamp in timestamps, and the trigger time in triggerTime:

 [data,timestamps,triggerTime] = startForeground(s);

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

Output Arguments
data — Values of acquired data
array of doubles

 startForeground

4-101

Values of acquired data, returned as an m-by-n array of doubles, where m is the number of
scans acquired, and n is the number of input channels in the session.

timeStamps — Recorded timestamp
numeric

Recorded timestamp relative to the time the operation is triggered, returned as an m-by-1
array, where m is the number of scans.

triggerTime — Timestamp of acquired data
numeric

Timestamp of acquired data which is a MATLAB serial date timestamp representing the
absolute time when timeStamps = 0.

See Also
addAnalogInputChannel | addAnalogOutputChannel | addDigitalChannel |
daq.createSession | startBackground

Topics
“Acquire Data in the Foreground”
“Generate Pulse Data on a Counter Channel”
“Hardware Discovery and Session Setup”

Introduced in R2010b

4 Functions — Alphabetical List

4-102

stop
Stop background operation

Syntax
stop(s);

Description
stop(s); stops the session and all associated hardware operations in progress. Stopping
the session flushes all undelivered data that is below the threshold defined by the
property NotifyWhenDataAvailableExceeds, and will not fire any more DataAvailable
events.

Examples

Stop Background Data Generation

Generate continuous background data until stopped.

Generate output data.

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2',0,'Voltage');
s.IsContinuous = true;
s.Rate=10000;
data=linspace(-1,1,5000)';
queueOutputData(s,data)
startBackground(s);

Perform other MATLAB operations during the generation, then stop the session.

 stop

4-103

stop(s);

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

See Also
Functions
startBackground | startForeground | wait

Introduced in R2010b

4 Functions — Alphabetical List

4-104

wait
Block MATLAB until background operation completes

Syntax
wait(s)
wait(s,timeout)

Description
wait(s) blocks MATLAB until the background operation completes. To abort the wait,
press Ctrl+C.

Tips You cannot call wait if you have set the session IsContinuous property to true. To
terminate the operation in this case, use the stop function.

wait(s,timeout) blocks MATLAB until the operation completes or the specified
timeout occurs. If the session operation does not complete before this timeout occurs,
MATLAB is unblocked, an error is thrown, and the data acquisition session operation
continues running.

Examples

Wait for Session to Complete Data

Create a session and add an analog output channel.

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage');

Queue some output data.

queueOutputData(s,zeros(10000,1));

 wait

4-105

Start the session, then issue a wait. This blocks MATLAB until all data is output.

startBackground(s);
% Perform other MATLAB operations.
wait(s)

Queue more data and wait for up to 15 seconds.

queueOutputData(s,zeros(10000,1));
startBackground(s);
% Perform other MATLAB operations.
wait(s,15)

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

timeout — Session timeout value
numeric

Session timeout value in seconds, specified as a numeric value. This value is the
maximum time in seconds to wait.

See Also
Functions
startBackground | stop

Introduced in R2010b

4 Functions — Alphabetical List

4-106

DataAvailable
Notify when acquired data is available to process

Syntax
lh = addlistener(session,'DataAvailable',callbackfct);
lh = addlistener(session,'DataAvailable',@(src,event) expr)

Description
lh = addlistener(session,'DataAvailable',callbackfct); creates a listener
for the DataAvailable event. When data is available to process, the callback executes.
The callback can be any MATLAB function with the (src,event) signature.

Tip The frequency with which the DataAvailable event is fired, is controlled by
NotifyWhenDataAvailableExceeds

lh = addlistener(session,'DataAvailable',@(src,event) expr) creates a
listener for the DataAvailable event and fires an anonymous callback function. The
anonymous function requires the specified input arguments and executes the operation
specified in the expression expr. Anonymous functions provide a quick means of creating
simple functions without storing your function in a separate file. For more information see
Anonymous Functions (MATLAB).

The callback has two required parameters: src and event. src is the session object for
the listener and event is a daq.DataAvailableInfo object containing the data
associated and timing information. Properties of daq.DataAvailableInfo are:

Data
An m-by-n matrix of doubles where m is the number of scans acquired, and n is the
number of input channels in the session.

 DataAvailable

4-107

TimeStamps
The timestamps relative to TriggerTime in an m-by-1 array where m is the number of
scans acquired.

TriggerTime
A MATLAB serial date time stamp representing the absolute time the acquisition
trigger occurs.

Examples

Create DataAvailable Function

This example shows how to create an event that triggers a callback function to plot data.

Create a session, add an analog input channel, and change the duration of the acquisition.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');
s.DurationInSeconds = 5;

Add a listener for the DataAvailable event to trigger the plotting callback.

lh = addlistener(s,'DataAvailable',@plotData);

Create a function that plots the data when the event occurs.

 function plotData(src,event)
 plot(event.TimeStamps,event.Data)
end

Start the acquisition and wait.

startBackground(s);
wait(s)

Delete the listener.

delete(lh)

4 Functions — Alphabetical List

4-108

Create Anonymous DataAvailable Function

This example shows how to create an event using an anonymous function call to plot data
when an event occurs.

Create a session, add an analog input channel, and change the duration of the acquisition.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');
s.DurationInSeconds = 5;

Add a listen with an anonymous function call.

lh = s.addlistener('DataAvailable', ...
 @(src,event) plot(event.TimeStamps, event.Data));

Acquire data.

s.startBackground();

Delete the listener.

delete(lh)

Input Arguments
session — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

callbackfct — Callback function
function handle

Callback function, specified as a function handle.

expr — Anonymous callback function
MATLAB operation

 DataAvailable

4-109

Anonymous callback function, specified as a MATLAB operation. The expression executes
when the trigger occurs.

See Also
Functions
addlistener | daq.createSession | startBackground

Properties
IsNotifyWhenDataAvailableExceedsAuto | NotifyWhenDataAvailableExceeds

Topics
“Acquire Data in the Background”

Introduced in R2010b

4 Functions — Alphabetical List

4-110

DataRequired Event
Notify when additional data is required for output on continuous generation

Syntax
lh = addlistener(session,'DataRequired',callbackfct);
lh = addlistener(session,'DataRequired',@(src,event) expr);

Description
lh = addlistener(session,'DataRequired',callbackfct); creates a listener
for the DataRequired event. When more data is required, the callback is executed. The
callback is typically used to queue more data to the device. The callback can be any
MATLAB function with the (src,event) signature.

Tips Frequency is controlled by NotifyWhenScansQueuedBelow.

lh = addlistener(session,'DataRequired',@(src,event) expr); creates a
listener for the DataRequired event and fires an anonymous function. The anonymous
function requires the specified input arguments and executes the operation specified in
the expression expr. Anonymous functions provide a quick means of creating simple
functions without storing your function in a separate file. For more information see
Anonymous Functions (MATLAB).

The callback has two required parameters: src and event. src is the session object for
the listener and event is a daq.DataRequiredInfo object.

Examples

Add an Anonymous Listener to a Signal Generation Session

Create a session and add two analog output channels.

 DataRequired Event

4-111

s = daq.createSession('ni');
s.IsContinuous = true;
addAnalogOutputChannel(s,'cDAQ1Mod2',0:1,'Voltage');

Create output data for the two channels.

outputData0 = (linspace(-1,1,1000))';
outputData1 = (linspace(-2,2,1000))';

Queue the output data, add an anonymous listener, and generate the signal in the
background.
queueOutputData(s,[outputData0,outputData1]);
lh = addlistener(s,'DataRequired', ...
 @(src,event) src.queueOutputData([outputData0,outputData1]));

Generate the output data and pause for up to 15 seconds.

startBackground(s);
pause(15)

Delete the listener.

delete(lh)

Input Arguments
session — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

callbackfct — Callback function
function handle

Callback function, specified as a function handle.

expr — Anonymous callback function
MATLAB operation

4 Functions — Alphabetical List

4-112

Anonymous callback function, specified as a MATLAB operation. The expression executes
when the trigger occurs.

See Also
Functions
addlistener | daq.createSession | startBackground

Properties
IsContinuous | IsNotifyWhenScansQueuedBelowAuto | NotifyWhenScansQueuedBelow

Introduced in R2010b

 DataRequired Event

4-113

ErrorOccurred Event
Notify when device-related errors occur

Syntax
lh = addlistener(session,'ErrorOccurred',callbackfct);
lh = addlistener(session,'ErrorOccurred',@(src,event) expr);

Description
lh = addlistener(session,'ErrorOccurred',callbackfct); creates a listener
for the ErrorOccurred event. When an error occurs, the callback is executed. The
callback can be any MATLAB function with the (src,event) signature.

Note In background mode, errors and exceptions are not displayed by default. Use the
ErrorOccurred event listener to display the errors.

lh = addlistener(session,'ErrorOccurred',@(src,event) expr); creates a
listener for the ErrorOccurred event and fires an anonymous function. The anonymous
function requires the specified input arguments and executes the operation specified in
the expression expr. Anonymous functions provide a quick means of creating simple
functions without requiring that your function be saved in a separate file. For more
information, see Anonymous Functions (MATLAB).

The callback has two required parameters: src and event. src is the session object for
the listener, and event is a daq.ErrorOccurredInfo object. The
daq.ErrorOccurredInfo object contains the Error property, which is the
MException associated with the error. You can use the MException.getReport
method to return a formatted message that uses the same format as errors thrown by
internal MATLAB code.

4 Functions — Alphabetical List

4-114

Examples

Add a Listener to Display an Error Report
Create a session, and add an analog input channel.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Get a formatted report of the error.
lh = addlistener(s,'ErrorOccurred',@(src,event) disp(getReport(event.Error)));

Acquire data, wait, and delete the listener.

startBackground(s);
wait(s)
delete(lh)

Input Arguments
session — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

callbackfct — Callback function
function handle

Callback function, specified as a function handle.

expr — Anonymous callback function
MATLAB operation

Anonymous callback function, specified as a MATLAB operation. The expression executes
when the trigger occurs.

 ErrorOccurred Event

4-115

See Also
Functions
addlistener | daq.createSession | startBackground

Classes
MException

Introduced in R2010b

4 Functions — Alphabetical List

4-116

